MEDIA-ENHANCED THIRD EDITION

The first edition of this book was published in 1989 and the second edition in 1995. The basic intent of this edition, as in the two previous editions, is to provide a cohesive presentation of power electronics fundamentals for applications and design in the power range of 500 kW or less where a huge market exists and where the demand for power electronic engineers is likely to exist. This book has been adopted as a textbook at many universities around the world; it is for this reason that the text in this book has not been altered in any way. However, a CD-ROM has been added, which both the instructors and students will find very useful. This CD-ROM contains the following:

1. A large number of new problems with varying degrees of challenges have been added for homework assignments and self-learning.
2. PSpice-based simulation examples have been added to illustrate basic concepts and help in the design of converters. PSpice® is an ideal simulation tool in power electronics education.
3. A newly developed magnetic component design program has been included. This program is extremely useful in showing design trade-offs; for example, influence of switching frequency on the size of inductors and transformers.
4. For all chapters in this book, PowerPoint-based slides are included and can be printed. These should be helpful to instructors in organizing their lectures and to students in taking notes in class on printed copies and for a quick review before examinations.

ORGANIZATION OF THE BOOK

This book is divided into seven parts.

Part 1 presents an introduction to the field of power electronics, an overview of power semiconductor switches, a review of pertinent electric and magnetic circuit concepts, and a generic discussion of the role of computer simulations in power electronics.

Part 2 discusses the generic converter topologies that are used in most applications. The actual semiconductor devices (transistors, diode, and so on) are assumed to be ideal, thus allowing us to focus on the converter topologies and their applications.

Part 3 discusses switch-mode dc and uninterruptible power supplies. Power supplies represent one of the major applications of power electronics.

Part 4 considers motor drives, which constitute another major applications area.
Part 5 includes several industrial and commercial applications in one chapter. Another chapter describes various high-power electric utility applications. The last chapter in this part of the book examines the harmonics and EMI concerns and remedies for interfacing power electronic systems with electric utilities.

Part 6 discusses the power semiconductor devices used in power electronic converters, including diodes, BJTs, MOSFETs, thyristors, GTOs, IGBTs, and MCTs.

Part 7 discusses the practical aspects of power electronic converter design, including snubber circuits, drive circuits, circuit layout, and heat sinks. An extensive new chapter on the design of high-frequency inductors and transformers has been added.

SOLUTIONS MANUAL

As with the former editions of this book, a Solutions Manual with completely worked-out solutions to all the problems (including those on the CD-ROM) is available to instructors. It can be requested from the Wiley web page: http://www.wiley.com/college/mohan.

ACKNOWLEDGMENTS

We wish to thank all the instructors who have allowed us this opportunity to write the third edition of our book by adopting its first and second editions. We express our sincere appreciation to the Wiley Executive Editor Bill Zobrist for his persistence in keeping us on schedule.

Ned Mohan
Tore M. Undeland
William P. Robbins
CONTENTS

PART 1 INTRODUCTION

Chapter 1 Power Electronic Systems

1-1 Introduction 3
1-2 Power Electronics versus Linear Electronics 4
1-3 Scope and Applications 7
1-4 Classification of Power Processors and Converters 9
1-5 About the Text 12
1-6 Interdisciplinary Nature of Power Electronics 13
1-7 Convention of Symbols Used 14

Problems 14
References 15

Chapter 2 Overview of Power Semiconductor Switches

2-1 Introduction 16
2-2 Diodes 16
2-3 Thyristors 18
2-4 Desired Characteristics in Controllable Switches 20
2-5 Bipolar Junction Transistors and Monolithic Darlington 24
2-6 Metal–Oxide–Semiconductor Field Effect Transistors 25
2-7 Gate-Turn-Off Thyristors 26
2-8 Insulated Gate Bipolar Transistors 27
2-9 MOS-Controlled Thyristors 29
2-10 Comparison of Controllable Switches 29
2-11 Drive and Snubber Circuits 30
2-12 Justification for Using Idealized Device Characteristics 31

Summary 32
Problems 32
References 32

Chapter 3 Review of Basic Electrical and Magnetic Circuit Concepts

3-1 Introduction 33
3-2 Electric Circuits 33
3-3 Magnetic Circuits 46

Summary 57
Problems 58
References 60
CONTENTS

7-3 Step-Down (Buck) Converter 164
7-4 Step-Up (Boost) Converter 172
7-5 Buck–Boost Converter 178
7-6 Ćuk dc–dc Converter 184
7-7 Full Bridge dc–dc Converter 188
7-8 dc–dc Converter Comparison 195

Summary 196
Problems 197
References 199

Chapter 8 Switch-Mode dc–ac Inverters: dc ↔ Sinusoidal ac 200

8-1 Introduction 200
8-2 Basic Concepts of Switch-Mode Inverters 202
8-3 Single-Phase Inverters 211
8-4 Three-Phase Inverters 225
8-5 Effect of blanking Time on Output Voltage in PWM Inverters 236
8-6 Other Inverter Switching Schemes 239
8-7 Rectifier Mode of Operation 243

Summary 244
Problems 246
References 248

Chapter 9 Resonant Converters: Zero-Voltage and/or Zero-Current Switching 249

9-1 Introduction 249
9-2 Classification of Resonant Converters 252
9-3 Basic Resonant Circuit Concepts 253
9-4 Load-Resonant Converters 258
9-5 Resonant-Switch Converters 273
9-6 Zero-Voltage-Switching, Clamped-Voltage Topologies 280
9-7 Resonant-dc-Link Inverters with Zero-Voltage Switchings 287
9-8 High-Frequency-Link Integral-Half-Cycle Converters 289

Summary 291
Problems 291
References 295

PART 3 POWER SUPPLY APPLICATIONS 299

Chapter 10 Switching dc Power Supplies 301

10-1 Introduction 301
10-2 Linear Power Supplies 301
10-3 Overview of Switching Power Supplies 302
10-4 dc–dc Converters with Electrical Isolation 304
10-5 Control of Switch-Mode dc Power Supplies 322
10-6 Power Supply Protection 341
10-7 Electrical Isolation in the Feedback Loop 344
10-8 Designing to Meet the Power Supply Specifications 346

Summary 349
Chapter 11 Power Conditioners and Uninterruptible Power Supplies
11-1 Introduction 354
11-2 Power Line Disturbances 354
11-3 Power Conditioners 357
11-4 Uninterruptible Power Supplies (UPSs) 358
 Summary 363
 Problems 363
 References 364

PART 4 MOTOR DRIVE APPLICATIONS 365

Chapter 12 Introduction to Motor Drives 367
12-1 Introduction 367
12-2 Criteria for Selecting Drive Components 368
 Summary 375
 Problems 376
 References 376

Chapter 13 dc Motor Drives 377
13-1 Introduction 377
13-2 Equivalent Circuit of dc Motors 377
13-3 Permanent-Magnet dc Motors 380
13-4 dc Motors with a Separately Excited Field Winding 381
13-5 Effect of Armature Current Waveform 382
13-6 dc Servo Drives 383
13-7 Adjustable-Speed dc Drives 391
 Summary 396
 Problems 396
 References 398

Chapter 14 Induction Motor Drives 399
14-1 Introduction 399
14-2 Basic Principles of Induction Motor Operation 400
14-3 Induction Motor Characteristics at Rated (Line) Frequency
 and Rated Voltage 405
14-4 Speed Control by Varying Stator Frequency and Voltage 406
14-5 Impact of Nonsinusoidal Excitation on Induction Motors 415
14-6 Variable-Frequency Converter Classifications 418
14-7 Variable-Frequency PWM-VSI Drives 419
14-8 Variable-Frequency Square-Wave VSI Drives 425
14-9 Variable-Frequency CSI Drives 426
14-10 Comparison of Variable-Frequency Drives 427
CONTENTS

18-6 Improved Single-Phase Utility Interface 488
18-7 Improved Three-Phase Utility Interface 498
18-8 Electromagnetic Interference 500

Summary 502
Problems 503
References 503

PART 6 SEMICONDUCTOR DEVICES

Chapter 19 Basic Semiconductor Physics 505

19-1 Introduction 507
19-2 Conduction Processes in Semiconductors 507
19-3 pn Junctions 513
19-4 Charge Control Description of pn-Junction Operation 518
19-5 Avalanche Breakdown 520

Summary 522
Problems 522
References 523

Chapter 20 Power Diodes 524

20-1 Introduction 524
20-2 Basic Structure and I-V Characteristics 524
20-3 Breakdown Voltage Considerations 526
20-4 On-State Losses 531
20-5 Switching Characteristics 535
20-6 Schottky Diodes 539

Summary 543
Problems 543
References 545

Chapter 21 Bipolar Junction Transistors 546

21-1 Introduction 546
21-2 Vertical Power Transistor Structures 546
21-3 I-V Characteristics 548
21-4 Physics of BJT Operation 550
21-5 Switching Characteristics 556
21-6 Breakdown Voltages 562
21-7 Second Breakdown 563
21-8 On-State Losses 565
21-9 Safe Operating Areas 567

Summary 568
Problems 569
References 570

Chapter 22 Power MOSFETs 571

22-1 Introduction 571
22-2 Basic Structure 571
Power electronics is the application of solid-state electronics to the control and conversion of electric power. The first high power electronic devices were mercury-arc valves. In modern systems, the conversion is performed with semiconductor switching devices such as diodes, thyristors, and power transistors such as the power MOSFET and IGBT. In contrast to electronic systems concerned with transmission and processing of signals and data, in power electronics substantial amounts of electrical energy