Environmental Soil Chemistry
SOCR 567
4 Credits (3-0-1)

Professor
Dr. Thomas Borch is the instructor for this class. He is an Assistant Professor in the Department of Soil and Crop Sciences and in the Department of Chemistry and can be reached by email Thomas.Borch@ColoState.Edu or by phone 970-491-6235. His office hours: open door policy.

Lecture Description SOCR567 (3 credits)
Our focus will be the chemistry of terrestrial environments and the interactions of soil constituents with bacteria, nutrients and pollutants.

The class will be taught in the spring semester for 3 credits with Monday, Wednesday and Friday lectures from 9:00 – 9:50 am in the Plant Science Building Room W1.

Recitation Description SOCR567 (1 credit)
In addition to the lectures students will critically review (1-2 pages written reviews are required from all of the students each week) and discuss scientific peer-reviewed journal articles that are relevant to the lecture section of this course. In addition, specific questions need to be answered for each of the article reviewed. Each week one student will in addition to the written review also present (using PowerPoint) the paper for the class – this presentation will then be followed by questions and discussion concerning the presented paper. The recitation will be taught in the spring semester for 1 credit with a Friday recitation from 8:00 – 8:50 am in the Plant Science Building Room W1.

Learning Objectives SOCR567

- Students will learn fundamental principles of soil and environmental chemistry such as sorption/desorption, ion exchange, precipitation, dissolution, oxidation-reduction, polymerization, and hydrolysis.
- Students will learn synchrotron-based spectroscopic techniques used in molecular environmental chemistry.
- Students will learn to evaluate the environmental importance of specific interactions among soil constituents, nutrients and pollutants.
- Students will learn soil and environmental biogeochemical processes important for the development of soils and the fate of nutrients and pollutants.
- Students will learn to write and orally present a scientific report based on an environmental soil chemistry case study
- Students will learn state-of-the-art soil (bio)remediation theories and strategies
- Students will learn to read and critically evaluate peer-reviewed literature on topics related to Environmental Soil Chemistry.
• Students will learn to write and orally present an advanced scientific report based on an environmental chemistry case study

• Students will learn to solve advanced environmental soil chemistry problem sets

Policies

Note sheets are allowed for the final exam: Students can bring two pages (one-sided) typed or one page (two-sided) typed with notes for the final exam. Font size (minimum) 10 and 1 inch margins (top, bottom, left, and right).
Additional information: Cheating is unacceptable and will be reported.

Required Textbook

Title: Environmental Soil Chemistry (2nd Edition)
Author: Donald L. Sparks
Publisher: Academic Press
Edition/Year: 2002
ISBN: 0-12-656446-9
Additional information: none
Type: Required resource

Other Textbooks (on reserve)

Title: Soil and Water Chemistry: An Integrative Approach
Author: Michael E. Essington
Publisher: CRC Press
Edition/Year: 2004
Additional information: none
Type: Recommended resource

Title: Environmental Chemistry of Soils
Author: Murray B. McBride
Publisher: Oxford University Press, Inc.
Edition/Year: 1994
Additional information: none
Type: Recommended resource

Title: Environmental Soil and Water Chemistry: Principles and Applications
Author: V.P. Evangelou
Publisher: Wiley Inter-Science
Edition/Year: 1998
ISBN: 0-471-16515-8
Additional information: none
Type: Recommended resource
Evaluation SOCR567
This class will meet jointly with SOCR467 for 3 hours of lecture per week. However, the recitation section will be separate from the undergraduate class. In addition, the graduate students will be graded separately from the undergraduate students on all assignments and the home work sets, take-home exam as well as the final exam will require more integrative and in-depth understanding of the lecture material and some additional questions.

The lecture portion will be evaluated as detailed below. The four problem sets will consist of multiple questions that relate to the chemistry learnt in-class and will require many advanced calculations/quantitative answers which will be evaluated by the instructor. The take home exam will be a group project that will apply the chemistry learnt in-class to solve a realistic environmental problem. This project will be evaluated based on a written report and an oral defense of the project. The final exam will include short answers and calculations. Students will review 10 journal articles during the recitation sections and learn about how to review and write a scientific article. The graduate students will meet with the professor in a separate recitation time for further discussion of lecture topics and student presentation of the readings. The papers to be reviewed are directly related to the topics (book chapters) that will be covered during the lectures. The papers to be reviewed will be selected to provide the students with current state-of-knowledge of the topics from the lecture sections. Graduate students will be expected to contribute to the discussion of the journal articles in recitation and to write a 1-2 page (single spaced) review of each article. The reviews will summarize the main points of the paper and critique the authors’ augments.

Based on a percent scale where 100% is the highest obtainable grade the students will be evaluated as follows:

- In-class participation (5%)
- Four Problem sets (40%; 10% each)
- Take-home exam (25%; written part 15% and oral part 10%)
- Final exam (20%)
- Recitation (10%; 1% per journal article review)

Prerequisite SOCR567
None

Lecture Outline and Reading Assignments SOCR567

Lesson 1
Date: January 23, 2008
Objectives: Introduction to Environmental Soil Chemistry
Topics: History, Evolution, and Contaminants in Waters and Soils
Readings: Chapter 1 in Sparks

Lesson 2
Date: January 25, 2008
Objectives: Introduction to Molecular Environmental Soil Chemistry
Topics: Advanced Analytical Techniques such as Synchrotron Radiation Based Techniques
Readings: Chapter 1 in Sparks

Lesson 3
Date: January 28, 2008
Objectives: Review of Chemical Principles
Topics: Types of chemical bonding, Activity, Thermodynamic Properties
Readings: Chapter 1 in MB McBride

Lesson 4
Date: January 30, 2008
Objectives: Review of Chemical Principles
Topics: Equilibrium Constants, Solubility Products, Acidity/Basicity Constants, Complexations and Chelation Reactions
Readings: Chapter 1 in MB McBride

Lesson 5
Date: February 1, 2008
Objectives: Review of Chemical Principles
Topics: Electrochemistry, Kinetics,
Readings: Chapter 1 in MB McBride

Lesson 6
Date: February 4, 2008
Objectives: Learn About Important Inorganic Soil Components
Topics: Paulings Rule, Primary Soil Minerals
Readings: Sparks Chapter 2; pp 43-51

Lesson 7
Date: February 6, 2008
Objectives: Learn About Important Inorganic Soil Components
Topics: Secondary Soil Minerals, Clay Groups
Readings: Sparks Chapter 2 pp 51-59

Lesson 8
Date: February 8, 2008
Objectives: Learn About Important Inorganic Soil Components
Topics: Oxides, Hydroxides, Oxyhydroxides, Surface Area, CEC, XRD,
Readings: Sparks chapter 2 pp 59-73

Lesson 9
Date: February 11, 2008
Objectives: Learn about the chemistry of soil organic matter (SOM)
Topics: Carbon cycling, composition of SOM
Readings: Sparks chapter 3, pp 75 - 88

Lesson 10
Date: February 13, 2008
Objectives: Learn about SOM Chemistry
Topics: SOM fractionation, Structure, and Charge
Readings: Sparks chapter 3 pp 88 - 101

Lesson 11
Date: February 15, 2008
Objectives: Learn SOM chemistry relevant to environmental processes
Topics: SOM-Metal interactions, SOM-Clay Complexes, and retention of pesticides by humic substances
Readings: Sparks chapter 3 pp 101-113

Lesson 12
Date: February 18, 2008
Objectives: Review HWA1 question 1-4
Topics: Important equations for environmental chemistry.
Readings: Sparks chapter 1 - 3 and McBride chapter 1

Lesson 13
Date: February 20, 2008
Objectives: Learn to calculate
Topics: Review HWA1 question 5-8
Readings: Sparks chapter 1-3 and McBride Ch. 1

Lesson 14
Date: February 22, 2008
Objectives: Review HWA1 Questions 9 to 12
Topics: Calculation of important soil/environmental chemical values
Readings: Sparks chapter 1-3 and McBride chapter 1.

Lesson 15
Date: February 25, 2008
Objectives: Learn about soil solution-solid phase equilibria
Topics: 1) Measurement and speciation of the soil solution. Review ion activity and activity coefficients (self-study)
Readings: Sparks chapter 4 p 115-126

Lesson 16
Date: February 27, 2008
Objectives: Learn about soil solution-solid phase equilibria
Topics: Dissolution and Solubility Processes
Readings: Sparks chapter 4 p 127-132

Lesson 17
Date: February 29, 2008
Objectives: Learn about sorption phenomena
Topics: Terminology, surface functional groups, surface complexes
Readings: Sparks chapter 5 p 133 - 144

Lesson 18
Date: March 3, 2008
Objectives: Learn about surface complexation, sorption isotherms and equilibrium-based adsorption models
Topics: Surface complexes; Freundlich and Langmuir equations
Readings: Sparks chapter 5 p 144 - 151

Lesson 19
Date: March 5, 2008
Objectives: Learn about Double-Layer Theory and Models
Topics: Gouy-Chapman Model, diffuse electric double-layer model/calculations,
Readings: Sparks chapter 5 p 151 -155

Lesson 20
Date: March 7, 2008
Objectives: Learn about Double-Layer Theory and Models
Topics: Gouy-Chapman Model
Readings: Sparks chapter 5 p 155-159

Lesson 21
Date: March 10, 2008
Objectives: Learn about the Stern Theory and sorption of metal cations and anions
Topics: Stern Theory, deficiencies of double-layer models, sorption of metal cations and of anions
Readings: Sparks chapter 5 p 159-163 (on p 163 only Fig. 5.16); p 172-176

Lesson 22
Date: March 12, 2008
Objectives: Learn about surface precipitation
Topics: surface precipitation, speciation of metal-contaminated soils
Readings: Sparks chapter 5 p 177-182

Lesson 23
Date: March 14, 2008
Objectives: Learn about points of zero charge and ion exchange processes
Topics: pzc, CEC, AEC
Readings: Sparks chapter 5 and 6 p 183 - 190
Lesson 24
Date: March 24, 2008
Objectives: To learn about Ion Exchange Processes
Topics: CEC constants, selectivity coefficients, thermodynamics of ion exchange
Readings: Sparks chapter 6 p 192 - 194

Lesson 25
Date: March 26, 2008
Objectives: Learn about thermodynamics of ion exchange and "experimental" interpretations
Topics: delta G, H, and S for an ion exchange process and calculation of equilibrium exchange constants, selectivity coefficients, and exchanger phase activity coefficients.
Readings: Sparks chapter 6 p 195 -205

Lesson 26
Date: March 28, 2008
Objectives: Discuss the objectives of the different case studies in the Take-Home Exam.
Topics: Fate and transport of nutrients, contaminants, pharmaceuticals, and organic matter.
Readings: None
Assignments: Take-Home Exam

Lesson 27
Date: March 31, 2008
Objectives: Learn about kinetics of soil chemical processes
Topics: Rate limiting steps, time scales of chemical reactions, rate laws, reaction order, rate constants, kinetic models
Readings: Sparks chapter 7 p 207-215

Lesson 28
Date: April 2, 2008
Objectives: Learn about kinetic models and methodologies
Topics: Elovic equation, parabolic diffusion equation, fractional power, flow methods and relaxation techniques
Readings: Sparks chapter 7 p 215 -228

Lesson 29
Date: April 4, 2008
Objectives: Learn about Kinetics of important soil chemical processes
Topics: kinetics of sorption-desorption reactions, precipitation/dissolution reactions, organic contaminants, ion exchange
Readings: Sparks chapter 7 p 228 - 238

Lesson 30
Date: April 7, 2008
Objectives: Learn about kinetics of mineral dissolution and redox chemistry of soils
Topics: rate-limiting steps, surface-controlled dissolution, ligand-promoted dissolution, proton-promoted dissolution, oxidation-reduction reactions and potentials, Eh vs pH and pe vs pH diagrams
Readings: Sparks chapter 7 p 238 - 244 and Sparks chapter 8 p 245 - 253

Lesson 31
Date: April 9, 2008
Objectives: Learn about important redox processes
Topics: pe - pH diagrams, and impact of Fe (bio)reduction on the fate and transport of nutrients and contaminants
Readings: Sparks chapter 8 p 251 -265

Lesson 32
Date: April 11, 2008
Objectives: Learn about Redox Chemistry of Soils
Topics: Measurement and use of redox potentials, and important redox reactions in soils
Readings: Sparks chapter 8 p 253 -265

Lesson 33
Date: April 14, 2008
Objectives: Learn about the chemistry of soil acidity
Topics: acid rain, nine spoil and acid sulfate soils, solution chemistry of aluminum, (non)exchangeable Al
Readings: Sparks Chapter 9 p 267 - 277

Lesson 34
Date: April 16, 2008
Objectives: Learn about soil acidity
Topics: titration analyses, liming soils
Readings: Sparks chapter 9 p 277 -283

Lesson 35
Date: April 18, 2008
Objectives: Learn about toxic metals and remediation strategies
Topics: U, Cr, As sources, toxicity, remediation
Readings: Suggested: VP Evangelou chapter 12, 13, and 14

Lesson 36
Date: April 21, 2008
Objectives: Learn about U and Cr bioremediation and the chemistry of saline and sodic soils
Topics: U and Cr Remediation of Superfund Sites, Soil Salinity
Readings: Sparks chapter 10 p 285 - 287. Suggested readings: Evangelou chapter 12, 13, and 14 and Essington chapter 11

Lesson 37
Date: April 23, 2008
Objectives: Learn about the chemistry of saline and sodic soils
Topics: irrigation water quality, sources of soluble salts, total dissolved solids (TDS), electrical conductivity (EC), parameters for measuring the sodic hazard (ESP and SAR).
Readings: Sparks chapter 10 p 287-299

Lesson 38
Date: April 25, 2008
Objectives: Learn about emerging contaminants
Topics: Sources, toxicity, and fate of steroid hormones

Lesson 39
Date: April 28, 2008
Objectives: Learn about emerging contaminants
Topics: Sources, Toxicity and Environmental Fate

Lesson 40
Date: April 30, 2008
Topics: Student Presentations

Lesson 41
Date: May 2, 2008
Topics: Student Presentations

Lesson 42
Date: May 5, 2008
Topics: Student Presentations

Lesson 43
Date: May 7, 2008
Objectives: Review of chapter 1-5 in Sparks
Readings: Sparks chapter 1 to 5 (p. 1-186)

Lesson 44 (Last Lesson)
Date: May 9, 2008
Objectives: Review of chapter 6-10 in Sparks
Readings: Sparks chapter 6 to 10 (p. 187-300)

Recitation Outline SOCR567

Recitation 1
Date: January 25, 2008
Objectives: Learn how to read a scientific peer-reviewed journal article
Readings: None

Recitation 2
Date: February 1, 2008
Objectives: Learn how to review/evaluate a scientific peer-reviewed journal article
Readings: None

Recitation 3
Date: February 8, 2008
Objectives: Learn how to review/evaluate a scientific peer-reviewed journal article
Readings: To be announced

Recitation 4
Date: February 15, 2008
Objectives: Review and presentation of journal article
Readings: To be announced (see examples below)

Recitation 5
Date: February 22, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 6
Date: February 29, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 7
Date: March 7, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 8
Date: March 14, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 9
Date: March 28, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 10
Date: April 4, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 11
Date: April 11, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 12
Date: April 18, 2008
Objectives: Review and presentation of journal article
Readings: To be announced
Recitation 13
Date: April 25, 2008
Objectives: Review and presentation of journal article
Readings: To be announced

Recitation 14
Date: May 2, 2008
Objectives: Learn how to write a scientific paper
Readings: To be announced

Lesson 15 (Last Recitation)
Date: May 9, 2008
Objectives: Learn how to write a scientific paper
Readings: None

Examples of papers to be reviewed in the recitations:

Summary Explanation

<table>
<thead>
<tr>
<th></th>
<th>SOCR467</th>
<th>SOCR567</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Same as SOCR567</td>
<td>Same as SOCR467</td>
</tr>
<tr>
<td>Readings</td>
<td>Different from SOCR567</td>
<td>Different from SOCR467 (students will read additional sections of the required book)</td>
</tr>
<tr>
<td>Problem Sets</td>
<td>Different from SOCR567</td>
<td>Different from SOCR467 (students will solve more integrative and in-depth problems sets)</td>
</tr>
<tr>
<td>Take-home exam</td>
<td>Different from SOCR567</td>
<td>Different from SOCR467 (a more in-depth analysis of the case-studies will be required)</td>
</tr>
<tr>
<td>Final exam</td>
<td>Different from SOCR567</td>
<td>Different from SOCR467 (students will solve more integrative and in-depth problems sets)</td>
</tr>
<tr>
<td>Recitation</td>
<td>Not a part of SOCR467</td>
<td>The recitation section is exclusively for SOCR567 students and will continue to discuss the principles presented in the lecture material and integrate this with the current research papers being reviewed by the graduate students</td>
</tr>
</tbody>
</table>
Consequently, site specific investigations will be required because the bioaccessible As and Pb data in the BGS soil chemistry datasets are estimated values based on national rather than site-specific predictive models. Reports generated from this spatial data will help to inform planning decisions and to aid environmental consultants, developers, householders and their legal representatives. The dataset comprises of the following layers. Estimated Ambient Background Soil Chemistry (1:50 000). Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural materials and heavy metals, pesticides, industrial contaminants, acid rain, and salts. Timely and comprehensive discussions of applications to real-world environmental concerns are a central focus of this established text. Provides students with both sound