Role of Diet in Dermatological Conditions

Divya SA1*, Sriharsha M1, Narotham RK2, Krupa SN2 and Siva TRK1

1Department of Pharmacy Practice, P. Ramí Reddy Memorial College of Pharmacy, Kadapa, Andhra Pradesh, India
2Dermatology Venereology and Leprology, Rajiv Gandhi Medical Science (RIMS), Kadapa, Andhra Pradesh, India

Abstract

In recent years nutritional deficiency diseases have been reported in developed countries. Nutritional deficiencies can be due to inadequate intake, abnormal absorption or improper utilization. Many nutrients are essential for life, an adequate amount of nutrients in the diet is necessary for providing energy, building and maintaining body organs and for various metabolic processes. Skin disorders have long been associated with nutritional deficiencies. Nutrition is one of the most important parameters that are involved in modulating skin health and condition [2].

In general dermatological problems where diet plays a role are atopic eczema, urticaria, dermatitis herpetiformis, psoriasis, pityriasis rubra pilaris, purpura, scurvy, Refsum’s disease, ichthyosis (nutritional), vitiligo, hypogamma conditions, acne, rosacea, kwashioorkor, marasmus, stomatis, phynodermia, pellagra, acrodermatitis enteropathica, homocysteinuria, hartnup disease, gout, porphyrias, xanthomas, hyper carotenemia and lycopenemia. Dietary changes or modification might help to prevent recurrences of many skin diseases.

Introduction

Many nutrients are essential for life, and an adequate amount of nutrients in the diet is necessary for providing energy, building and maintaining body organs, and for various metabolic processes [1].

Skin disorders have long been associated with nutritional deficiencies. Nutrition is one of the most important parameters that are involved in modulating skin health and condition [2].

In general dermatological problems where diet plays a role are atopic eczema, urticaria, dermatitis herpetiformis, psoriasis, pityriasis rubra pilaris, purpura, scurvy, Refsum’s disease, ichthyosis (nutritional), vitiligo, hypogamma conditions, acne, rosacea, kwashioorkor, marasmus, stomatis, phynodermia, pellagra, acrodermatitis enteropathica, homocysteinuria, Hartnup disease, gout, porphyrias, xanthomas, hypercarotenemia and lycopenemia [3].

Earlier nutritional deficiency diseases were assumed to be limited to the underdeveloped and developing countries. In recent years nutritional deficiency diseases have been reported in developed countries [4,5]. Nutritional deficiencies can be due to inadequate intake, abnormal absorption or improper utilization [1]. Nutritional status plays an important role in the maintenance of healthy skin [6-9]. Deficiencies of several vitamins, minerals, and fatty acids have clear cutaneous manifestations [10-13].

Many attempts have been made to improve skin health and beauty by changing or by supplementing the diet [14]. In 2001, Boelsma et al. [15] reviewed the effects of vitamins, carotenoids and fatty acids supplementation in optimizing skin condition and preventing skin diseases and concluded that nutritional factors show potential beneficial actions on the skin.

Macronutrients (carbohydrates, proteins, and lipids) and micronutrients (vitamins and nutritionally essential minerals) work together to maintain the barrier functions of skin in the face of everyday challenges. Changes in nutritional status that alter skin structure and function can also directly affect skin appearance [16].

Excessive inflammation of the skin is known to increase the requirements of specific nutrients like folic acid and protein [10,17].

Primary requirement for skin cells is glucose also provides carbohydrate backbones for modification of proteins (glycoproteins) and lipids (glycoplipids) that comprise the extracellular environment of the epidermis. Aberrant glucose handling drastically affects skin structure and appearance [18].

Much of the role of nutrition in skin health emphasizes on the effects of deficiency, since the structural components of the skin are supported by a variety of nutritive factors, such as small peptides, minerals, and vitamins, which serve as enzyme cofactors, activators, or inhibitors [9].

Many micronutrients were initially recognized for their impact on skin health. The effect of micronutrient supplementation on skin health is a relatively new field of study, as associations between diet and skin conditions are only now starting to emerge [19] (Table 1).

Vitamin A

Deficiency of vitamin A results in hyperkeratinization with reduced number of sebaceous glands and blockage of sweat glands [10].

Hypovitaminosis also affects the skin by causing xerosis, generalized hyperpigmentation, and sparse and fragile hair. Plugging of the follicular openings with spiny horns is one of the classic signs of vitamin A deficiency as in phrynoderma [20].

Retinol (Vitamin A), carotenoids (provitamin A) and retinoids (Vitamin A metabolites) are absorbed better with parallel intake

*Corresponding author: Divya SA, Department of pharmacy practice, P. Ramí Reddy Memorial College of Pharmacy, Kadapa, Andhra Pradesh, India, Tel: 0903212864; E-mail: aparanji.sree@gmail.com, sriharsha.surya@gmailcom

Received December 31, 2014; Accepted July 24, 2015; Published August 13, 2015

Copyright: © 2015 Divya SA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Table 1: List of Macronutrients and Micronutrients Related to Their Skin Conditions.

<table>
<thead>
<tr>
<th>Macronutrients</th>
<th>Skin conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates, proteins</td>
<td>Galactosemia, Kwashiorkor (Protein malnutrition)</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>Photoprotection, photoaging, wound healing, skin sensitivity</td>
</tr>
<tr>
<td>Minerals</td>
<td>Weeping dermatitis, secondary infections, excessive fragile hair and spars, alopecia, nail defects, acrodermatitis, poor wound healing.</td>
</tr>
<tr>
<td>Zinc</td>
<td>Spoon shaped nails, hair loss, glossitis with loss of papillae, angular cheilitis and pruritis.</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
</tr>
</tbody>
</table>

Vitamins

- **Vitamin A**
 - Hyperkeratinization, sparse and fragile hair, phymoderma, herpes, wound healing, acne, photoaging

- **Vitamin C**
 - Scurry

- **Vitamin B12**
 - Hyperpigmentation, vitiligo, angular stomatitis, hair changes

- **Vitamin B3**
 - Pellagra

- **Vitamin D**
 - Photo damage

- **Vitamin E**
 - Anti-inflammatory effects—erythema, edema, Wound healing, photodamage

Macronutrients

- **Proteins**

Minerals

- **Zinc**
 - Weeping dermatitis, secondary infections, excessive fragile hair and spars, alopecia, nail defects, acrodermatitis, poor wound healing.

- **Iron**
 - Spoon shaped nails, hair loss, glossitis with loss of papillae, angular cheilitis and pruritis.

Table 1: List of Macronutrients and Micronutrients Related to Their Skin Conditions.

| Vitamins | Skin conditions |
|----------|----------------|--|
| Vitamin A | Hyperkeratinization, sparse and fragile hair, phymoderma, herpes, wound healing, acne, photoaging |
| Vitamin C | Scurry |
| Vitamin B12 | Hyperpigmentation, vitiligo, angular stomatitis, hair changes |
| Vitamin B3 | Pellagra |
| Vitamin D | Photo damage |
| Vitamin E | Anti-inflammatory effects—erythema, edema, Wound healing, photodamage |

Supplementation with β-carotene and other carotenoids [33-35] such as dietary tomato paste containing lycopene [36] protects against UV light induced erythema in humans. However, they are reported to exacerbate UV carcinogenesis under certain dietary conditions, by acting as prooxidants, at high oxygen pressure and under oxidative stress [37].

Selenium is an antioxidant mineral accountable for tissue elasticity. It also acts to avoid cell damage by free radicals. Associated skin signs contain hypopigmentation of the skin and hair and whitening of the nails [13]. It may play an important role in preventing skin cancer, as it can protect the skin from damage from excessive ultraviolet light.

Sources of selenium include wheat germ, seafood such as tuna and salmon, garlic, Brazil nuts, eggs, brown rice, and whole wheat bread [1].

Fatty Acids

Numerous studies have revealed that clinical imbalances of specific fatty acids are associated with a variety of skin problems. Hence dry, itchy, scaly skin is a hallmark sign of fatty acid deficiency [38].

Omega-6 fatty acids are believed to persuade more pro-inflammatory mediators and have been related with the development of inflammatory acne [39,40]. On the other hand, intake of high levels of omega-3 fatty acids is linked with declines in inflammatory factors [41]. In addition there are epidemiological studies that demonstrate that increasing the intake of omega-3 fatty acids through a diet rich in fish and seafood results in lower rates of inflammatory disease [42]. There are also studies claiming that sebum production is increased by the consumption of dietary fat or carbohydrate [43] and that variations in carbohydrates could also affect sebum composition [44,45].

Minerals Deficiency

Cutaneous manifestations of zinc deficiency are weeping dermatitis, secondary infection, poor wound healing, excessively fragile hair and sparse or no scalp and pubic hair [1]. Dermatitis, alopecia, and nail defects are also associated with zinc deficiency [11].

Zinc deficiency is accompanying with delayed wound healing. Lim et al. have hypothesized the association of dietary zinc in activating the nuclear factor kappa B (NFκB), expression of proinflammatory cytokines (interleukin1β and tumor necrosis factora), and in neutrophil infiltration during the early stage of cutaneous wound healing [46]. Turmeric, red pepper, cloves, ginger, cumin, anise, fennel, basil, rosemary, garlic, and pomegranate, can block NFkB activation of inflammatory cytokines [47].

Acridermatitis enteropathica develops in a zinc deficient patient and a combined nutritional deficiency of zinc, EFAs, albumin and amino acids may result in acridermatitis enteropathica [48].

The activities of lysyl oxidases that initiate the crosslinking of collagen and elastin decline with copper deficiency [49].

Chronic iron deficiency has resulted in spoon shaped nails (koilonychia), hair loss, glossitis with loss of papillae, angular cheilitis, and pruritus. Iron found in liver, eggs, meat, dark and green vegetables, lentils, potatoes, soybeans, chick peas, black beans, spinach, etc. [29,50].

Carotenemia

Carotenemia is caused by too much intake of carotene rich food.
such as oranges and carrots. Carotene is present in carrots. Hence excess eating of carrots has to be avoided [3].

Psoriasis

A low-calorie and low-protein diet has been recommended in the treatment of psoriasis [1]. Psoriasis is an inflammatory condition that appears to be aggravated by an inflammatory diet. An inflammatory diet may consist of a food allergen or a diet with imbalanced ω6 and ω3 fatty acids [57].

Psoriatic patients show increased sensitivity to gluten and their symptoms improve on a glutenfree diet [58]. A vegetarian based diet may put an individual at a risk of eating high amounts of vegetable oils and soy products, and low amounts of fish, which can tip the balance toward a proinflammatory state [1].

Low serum calcium and zinc during pregnancy is known to cause postpartum psoriasis. Supplementation of food containing calcium and zinc has been suggested in such situations [3]. Iodide can precipitate postpartum psoriasis. Seafood and iodized salt are rich sources of iodine [59,60].

PUFA intake in Psoriasis

Daily intake (170 g) of oily fish EPA/DHA 1.8 g/day or fish oil (10 capsules three times a day) supplementation [61] parenteral infusion of EPA and DHA 4.2 g/day useful in acute guttate psoriasis [62]. Combined ω3 and ω6 fatty acid supplementation (rationale: low concentration of PUFA in membrane phospholipids, increased saturated fatty acids and decreased ω6 fatty acid in psoriatic arthritis, high doses of linoleic acid suppressing LTB4 production) [63].

The consumption of fresh fruits and vegetables, such as carrots and tomatoes, may be beneficial in psoriasis because of their high content of carotenoids, flavonoids and vitamin C [64]. A sufficient status of antioxidants (e.g. vitamin C, vitamin E, bcarotene and selenium) may be helpful to prevent an imbalance of oxidative stress and antioxidant defence in psoriasis [65].

Alcohol stimulates histamine release and may thereby worsen skin lesions [66]. The intake of alcohol is associated with a concomitant increase in the intake of fatty foods and reduced consumption of fresh vegetables and fruits. Hence, alcohol intake should be restricted in psoriasis.

Acne

American Academy of Dermatology published recommendations 3 in 2007 suggesting that caloric restriction has no benefit in the management of acne and that there is insufficient suggestion to link the consumption of certain “food enemies” to acne. On the other hand, recent studies have suggested a rather close relationship between diet and acne [67,68].

Bulkley’s 1887 book [69] discussed the subject and up until the 1950s, in America, restrictions on various foods, most often dairy products, were presented in dermatology textbooks as part of acne therapy [70].

A positive association was made between dairy products (particularly skim milk) and acne [71-73]. A high glycemic load diet, processed cheese, a high-fat diet, and iodine play a role in the exacerbation of acne in Koreans [74]. Ludwig [75] and Liu and co-workers [76] found that chronic ingesting of high glycemic load carbohydrates may cause long-term hyperinsulinemia and insulin resistance. Insulin influences circulating concentrations of free insulin like growth factor I (IGF-1) and insulin like growth factor binding protein 3 (IGFBP-3), which in turn directly regulate keratinocyte proliferation and apoptosis [77].

Clement et al., in their studies have shown a positive association between the intake of skim milk and acne [78] Robyn N Smith et al., have recommended that nutrition-related lifestyle factors may play a role in the pathogenesis of acne [67]. The role of chocolate and other dietary factors in acne development has also been reported [79].

In the 1969 experiment by Fulton and co-workers 65 subjects (14 adolescent boys, 16 adolescent girls, and 35 young adult male prisoners) consumed either a 112-g bittersweet chocolate bar enriched with chocolate liquor and cocoa butter or a 112-g control bar without chocolate liquor and cocoa butter once a day for 4 weeks in a single blind crossover design with a 3-week washout period. Authors concluded “ingestion of high amounts of chocolate did not materially affect the course of acne vulgaris or the output or composition of sebum [80].”
Herpes

Herpes is a viral infection of the skin. A study suggested that a mix of nutrients, such as those found in fruits and vegetables, act together to sustain immune health, rather than individual dietary intakes of vitamins A, B6, C, and E, and of folic acid, zinc, and iron [81].

Scleroderma

It is an autoimmune disease of the connective tissue, characterized by fibrosis and thickening of various tissues. Avoidance of high-fiber diet is advised to patients with scleroderma. Improvement in the skin of scleroderma on vitamin E supplementation has been reported [82,83].

Atopic Dermatitis

Foods such as chocolate, cheese, coffee, yogurt, and some Japanese foods such as glutinous rice cake, soy sauce, and fermented soybeans are stated to play an important role in unpredictable, uneven aggravation of skin lesions in patients with atopic dermatitis [84]. Arguments in favor of the role of diet in AD include the fact that some foods provoke AD, an elimination diet can heal AD, diet manipulation can prevent allergy in newborns at risk for atopy, presence of specific serum immunoglobulin (Ig) E for food allergens [85].

Food allergy plays a role in 20% of children under the age of 4 years with AD. A direct effect on eczema is observed in four of 10 children with AD and proven food allergy [86]. Ninety percent of food allergy is caused by six foods such as wheat, milk, soy, fish, eggs and peanut [87].

A recent Cochrane review of nine randomized controlled trials of food allergy in patients with AD showed that there seems to be no benefit of an egg and milk free diet in unselected participants with atopic eczema [88].

Treatment of AD can be supported by supplementation of ‘probiotic’ intestinal bacteria [89]. A probiotic is currently defined as a live microbial food supplement with a recognized beneficial effect on human health [90]. However, a recent cochrane Intervention Review suggests that probiotics are not an effective treatment for eczema and may, in fact, carry a small risk of adverse events such as infections and bowel ischemia [91].

Cow’s milk containing penicillin spores, chocolates, food additives, citrus fruits, fish, shell fish, cheese, eggs, meat, nuts, alcohol, caffeine, tomatoes and wheat are known to aggravate atopic dermatitis [6].

Urticaria

Adverse reactions to food are a frequently discussed cause of urticaria. In acute urticaria, 63% of patients suspect food as the eliciting factor [3]. Penicillin can cause urticaria after food ingestion when present in beef, frozen meats and soft drinks, in penicillin sensitive individuals [92]. Food additives producing urticaria due to tartrazine dye has been reported [93]. Food additives most commonly concerned are azo-dyes, tartrazine, amaranth, sunset yellow and carmine. Certain foods are usually high in nickel content, such as cocoa and chocolate, soy beans, oatmeal, nuts and almonds, and fresh and dried legumes [95]. Food items most usually mentioned by patients as producing aggravation of dermatitis due to balsam of Peru are wine, candy, chocolate, cinnamon, curry, citrus fruit, tomatoes and flavorings. Avoidance of these food stuffs would constitute a low balsam diet and may alleviate contact dermatitis to balsam of Peru [96,97]. Nickel, cobalt and chromium allergies frequently coexist and patients sometimes respond to dietary restrictions of all three metals [98].

Fixed Drug Eruption

Artificial flavors, colors and preservatives in foods as well as dyes in medications can rarely be culprits in classic fixed drug eruptions [99,100].

Homocystinuria

A low methionine diet is mandatory. Forbidden foods contain milk and milk products, meat and fish, wheat, maize, rice, pulses, legumes, nuts and dried fruits. Fruits and vegetables may be consumed in moderate amounts. Foods that need not be controlled are sago, arrowroot, corn flour, custard, sugars, fats, tea and coffee [101].

Galactosemia

Dietary elimination of galactose and lactose is necessary throughout childhood. Nutritionally satisfactory galactose/lactosefree milk should be used during infancy. In later childhood, occasional lactose free milk and calcium and vitamin supplements may suffice [101].

Vitiligo

Childhood Vitiligo has been related to malnutrition and intake of junk food [102]. Food containing antioxidants like citrus fruits, carrots and tomatoes (Vit A), sour yoghurt, sour pickles etc. is contraindicated in patients with vitiligo [3]. The simultaneous consumption of milk and fish is also discouraged.

It has been found, however, that oral supplementation with antioxidants containing alfa-lipoic acid and vitamin B12 before and during NB-UVB broadband UVB significantly improves the clinical effectiveness of phototherapy [103,104].

Rosacea

Consumption of coffee, tea, other hot drinks, tobacco, alcoholic beverages, and spicy foods is known to precipitate rosacea [10] hence it should be avoided [105].

Refsum’s Disease

Vegetables and fruits rich in phytic acid are contraindicated [106].

Phytic acid is almost exclusively of exogenous origin and dietary restriction reduces plasma and tissue levels Fish, beef, lamb and dairy products should be avoided. The average daily intake of phytic acid is 50-100 mg/day, which should ideally be reduced to 10-20 mg/day [85].
Nutritional Ichthyosis

Topical application of sunflower or safflower oil and systemic supplementation of fish, which are rich in linoleic acid (essential fatty acids), are useful [107].

Phrynoderma

Green leafy vegetables, carrots, tomatoes, milk, eggs, fish (containing essential fatty acids), soyabean, and sunflower oil are useful [3,108].

Xanthomas

Xanthelasmas may be associated with hyperlipidemia108.In addition to specific therapy with lipid-lowering agents, patients need lifestyle modifications, in which foods containing high concentrations of cholesterol, such as fat, eggs, meat and dairy products are to be avoided [109,110].

Gout

Patients with gout is the avoidance of foods with a high purine content, such as organ meat (liver, kidney), selected fish and shellfish, meat and yeast extract brewer, baker’s yeast, pulses, certain vegetables (spinach, asparagus) and fermented milk products. Studies have observed an increased risk of gout among those who consumed large quantities of meat, seafood and alcohol. Although limited by confounding variables; low-fat dairy products, ascobic acid and wine consumption appear to be protective for the development of gout [111].

Porphyrias

High-fibre diet of natural vegetable/fruit products with a daily caloric content of 1676 kJ/day has been assessed for porphyria cutanea tarda and is found to be useful. In addition, patients with porphyria may use from dietary supplementation of carotene-containing foods, such as carrots and green leafy vegetables.

Conclusion

Relation between diet and dermatological conditions is well established. Dietary changes or modification might help to prevent recurrences of many skin diseases. Diet which we are presented in this paper show indication that there is link between nutrition and skin condition. Evidence from literature review as well as published works show that appropriate nutritional supplementation is beneficial in the prevention of the harmful effect of UV exposure, in the management of skin aging and of reactive skin, as well as for limiting hair loss. Altogether, the data show that a balanced diet represents a globalized approach for improving skin health.

References

28. David L, Healthy nutrition and your skin

92. Lockey SD (1959) Allergic reactions due to F D and C Yellow No. 5, an aniline dye used as a coloring and identifying agent in various steroids. Ann Allergy 17: 719-721.
97. Lockey SD (1959) Allergic reactions due to F D and C Yellow No. 5, an aniline dye used as a coloring and identifying agent in various steroids. Ann Allergy 17: 719-721.