An Annotated Embedded Systems Bibliography

Stephen A. Edwards
Computer Science Department
Columbia University

October 23, 2001

1 Books

Barr [4] is a readable general introduction that focuses on mundane issues such as compilers, linkers, and target boards.

Brown [12] is another very practical book, discussing such issues as compilers, linking, and interrupt latency. The book contains an extensive example of a pilot control panel.

Simon [38] is more comprehensive than Barr, speaking of RTOSes.

Burns and Wellings [14] is an academic text aimed at graduate students.

Grehan and Cyliax [25] talks more about RTOSes.

Ganssle [24] is a broad survey, covering issues such as which tools to buy. Probably fairly dated by now.

Wolf’s textbook [41] is aimed at undergraduates.

Bentham [5] talks about implementing TCP/IP, both for “normal” systems and finally an incredibly stripped-down version that runs on a tiny 8-bit PIC microcontroller.

Thomas and Moorby [40] is the standard reference on Verilog, a widely-used language for modeling and specifying digital hardware.

Ellsberger et al. [19] is the most readable book on SDL, a graphical language used mostly in Europe to describe telecommunication protocols.

The first two chapters of Thoen and Catthoor [39] give a reasonable overview of some embedded systems issues. The rest of the book is devoted to their Petri-net-like model for embedded software.

Gajski et al. [21] resembles Thoen and Catthoor [39] in that the early chapters are a reasonable survey of what’s going on in the field. The rest describe their particular little-used modeling language. A later book [22] describes another of their hardware/software modeling languages.

Balarin et al. [3] is a complete reference on POLIS, an academic tool designed mostly for the synthesis of automotive controllers that laid the foundation for Cadence’s commercial VCC tool.

Gallmeister [23] describes the POSIX.4 standard, the real-time extensions to the Unix-centric POSIX standards. It’s rather a heavyweight interface, not
clearly useful for all applications, but gives some insight into some things found in RTOSes.

Rubini [36] describes how to write Linux device drivers. Most embedded systems both use existing and require new device drivers of some sort.

Shaw [37] focuses on real-time systems, discussing issues such as scheduling, RTOSes, clock distribution, and execution time prediction. His motivating example is an air-traffic control system.

Labrosse [31] describes his MicroC/OS-II RTOS in excruciating detail. If you ever wondered how to implement a preemptive priority-based scheduler, this is the book to read.

2 Periodicals

Circuit Cellar magazine (www.circuitcellar.com) is a monthly magazine containing hobbyist projects that are usually embedded systems-like. One problem: they speak mostly about the design of the hardware and assume that you’ll just go and download the software.

Embedded Systems Programming (www.embedded.com) is a trade magazine for embedded systems developers. It usually has some lightweight discussions of programming, real-time issues, and whatnot. Its view of embedded systems is off-the-shelf single-board computers running an RTOS.

Kluwer publishes Design Automation for Embedded Systems, a scholarly journal on embedded systems issues.

3 Companies

Wind River Systems (www.windriver.com) is the main supplier of RTOSes (VxWorks) and IDE and development tools surrounding it.

TI (www.ti.com) is the leading supplier of DSPs.

Motorola (www.motorola.com) is another big supplier of embedded microprocessors, such as the 68000 series.

4 Papers

General surveys [15], [18]. An RTOS survey [34].

Polis-related: Verifying a CFSM network [2]. Synthesizing software from CFSMs [17], [1]. The shock-absorber example [16].

Synthesizing dataflow graphs [6], [11], [7], [9], [10], [8].

The El Greco project, which turned into Synopsys’ CoCentric System Studio tool for modeling dataflow and control [13].

The multi-language approach [20].

Edward’s view of what should be happening [32], [33].

Performance estimation [35].
Hermann Kopetz has long been promoting his Time-Triggered Protocol for communications within such real-time systems as cars. He’s publishes extensively on the idea. A broad survey: [27]. The philosophy: [28] [29]. How to synchronize the clocks in TTP: [30]. Modeling time: [26].

References

An annotated bibliography is a bibliography that gives a summary of each of the entries. The purpose of annotations is to provide the reader with a summary and an evaluation of each source. Each summary should be a concise exposition of the source's central idea(s) and give the reader a general idea of the source's content. The following are the main components of an annotated bibliography. Not all these fields are used; fields may vary depending on the type of annotated bibliography and instructions. An annotated bibliography provides a brief overview of the available research on a topic. You may be required to briefly summarise the research sources and/or assess the value of the source and/or reflect on the validity of this source material for your assignment task. Each information source is accompanied by a citation that is followed by a brief paragraph. When you write an annotated bibliography, you will need to consider: 1. Purposes 2. Format 3. Writing style 4. Examples. NOTE: APA referencing style is used in this fact sheet. 1. Purposes. The task of compiling an annotated bibliography will help the researcher think about the relevance and quality of the material on a topic. Does the information meet the requirements of the topic? An annotated bibliography in MLA and an APA format annotated bibliography includes a concise explanation of each listed source, known as an annotation. Depending on the assignment, this annotation may be solely descriptive, or analytical. An abstract and annotation should not be confused; they differ in both their substance as well as their placement in a paper.