2015 Syllabus
B.Sc. (Agriculture)

II year IV Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 203</td>
<td>Agronomy of field Crops- I</td>
<td>1+1</td>
</tr>
<tr>
<td>2.</td>
<td>HOR 211</td>
<td>Production Technology of Fruits and Plantation Crops</td>
<td>2+1</td>
</tr>
<tr>
<td>3.</td>
<td>SST 201</td>
<td>Principles and Practices of Seed Production</td>
<td>1+1</td>
</tr>
<tr>
<td>4.</td>
<td>SWE 211</td>
<td>Fundamentals of Soil and Water Conservation Engineering</td>
<td>2+1</td>
</tr>
<tr>
<td>5.</td>
<td>STA 211</td>
<td>Applied Statistics</td>
<td>1+1</td>
</tr>
<tr>
<td>6.</td>
<td>ERG 211</td>
<td>Renewable Energy</td>
<td>1+0</td>
</tr>
<tr>
<td>7.</td>
<td>AGR 204</td>
<td>Study Tour</td>
<td>0+1</td>
</tr>
<tr>
<td>8.</td>
<td>AEN 202</td>
<td>Economic Entomology and Principles of Pest Management</td>
<td>2+1</td>
</tr>
<tr>
<td>9.</td>
<td>PBG 201</td>
<td>Principles of Genetics and Cytogenetics</td>
<td>2+1</td>
</tr>
<tr>
<td>10.</td>
<td>SAC 202</td>
<td>Soil Resource Inventory and Problem Soils</td>
<td>1+1</td>
</tr>
<tr>
<td>11.</td>
<td>ANM 201</td>
<td>Introductory Nematology</td>
<td>1+1</td>
</tr>
<tr>
<td>12.</td>
<td>NSS/NCC 101</td>
<td>National Service Scheme/ National Cadet Corps</td>
<td>Regd. in 1 Sem</td>
</tr>
<tr>
<td>13.</td>
<td>PED 101</td>
<td>Physical Education</td>
<td></td>
</tr>
</tbody>
</table>

Total 14+10=24
Theory:

Unit - I: Cereals

Rice, Maize, Wheat, Oat, Barley, Rye and Triticale - Origin, geographic distribution, economic importance, soil and climatic requirements, varieties, cultural practices (from land preparation to harvest) and yield.

Unit - II: Millets

Sorghum, Pearl millet, Small millets - Finger millet, Foxtail millet, little millet, Kodo millet, Barnyard millet and Proso millet - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.

Unit - III: Pulses

Redgram, Blackgram, Greengram, Bengalgram, Horsegram, Cowpea, Soybean and Lentil - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.

Unit - IV: Oilseeds -I (Kharif)

Groundnut, sesame, sunflower, castor, Origin, and geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices, yield.

Unit - V: Oilseeds -I (Rabi)

Rape seed and mustard, safflower, Linseed, Niger - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices, yield.

<table>
<thead>
<tr>
<th>Cereals</th>
<th>Rice, maize, wheat, barley, oats, rye and triticale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millets</td>
<td>Sorghum, pearl millet, finger millet and minor millets</td>
</tr>
<tr>
<td>Pulses</td>
<td>Pigeonpea, green gram, black gram, cowpea, Chickpea, lentil and horse gram</td>
</tr>
<tr>
<td>Oilseeds</td>
<td>Groundnut, sesame, soybean, sunflower and castor</td>
</tr>
<tr>
<td></td>
<td>Rapeseed and mustard, safflower and linseed</td>
</tr>
</tbody>
</table>

Practical:

Identification of sugar, fibre, forage - nursery preparation and management for sugarcane and tobacco - main field preparation; Seed treatment techniques - Sowing and manuring –
Seeding equipment’s - Estimation of population - After cultivation practices - Study of growth and yield parameters and yield estimation, harvesting of above crops; Fodder preservation techniques - Silage and hay making, Cost and returns - Visit to institutes and industries - Farmers’ fields.

Theory - Lecture Schedule:

1. Importance and area, production and productivity of major cereals and millets of India and Tamil Nadu.
2. Importance and area, production and productivity of pulses and oilseeds crops of India and Tamil Nadu.
4. Rice - cultural practices - yield - economic benefits - Special type of Rice cultivation - Rajarajan 1000 (SRI), Transgenic Rice - Hybrid rice.
5. Maize - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
6. Wheat and Barley - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
7. Oats, Rye and Triticale - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
8. **Mid semester Examination.**
9. Sorghum and Pearl millet - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
10. Finger millet and Minor millets - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
11. Pigeonpea - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
12. Greengram, Blackgram and Cowpea - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield - Agronomy of rice fallow pulses.
13. Chickpea, Lentil and Horse gram - Origin, geographic distribution, economic importance, soil and climatic requirement, varieties, cultural practices and yield.
14. Groundnut - Origin, geographical distribution, economic importance, soil and climatic requirements - varieties, cultural practices yield and economics.
15. Sunflower - Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield.
16. Sesame and Castor - Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield.
17. Rapeseed, Mustard, Safflower, Niger and linseed - Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield.

Practical:
1. Identification of cereals, millets, pulses and oilseed crops in the crop cafeteria.
2. Practicing various nursery types and main field preparation for rice crop.
3. Nursery and main field preparation for important millets, pulses and oilseeds.
4. Acquiring skill in different seed treatment techniques in important field crops.
5. Estimation of plant population per unit area for important field crops.
6. Acquiring skill in field preparation, sowing and manuring of crops under pure and intercropping situations for cereals and millets.
7. Acquiring skill in field preparation, sowing and manuring of crops under pure and intercropping situations for pulses and oilseeds.
8. Acquiring skill in using seed drill for sowing operations.
9. Acquiring skill in foliar nutrition for important field crops.
14. Working out cost and returns of important cereals, millets, pulses and oilseeds crops.
15. Visit to farmers field / research stations to study the cultivation techniques of cereal, millets, pulses and oilseeds.
16. Visit to nearby Agricultural Research Station / Farmer’s field.

17. **Practical Examination.**

References:

E-References:
www.crida.org
www.cgiar.org
www.tnau.ac.in/agriportal
Aim
To impart knowledge on the principles of horticulture, propagation and production techniques of tropical, sub tropical, temperate fruit and plantation crops.

Theory

Unit I: Fundamentals and propagation techniques of fruit crops

Unit II: Production status and crop production techniques in tropical fruit crops
Scope and importance of fruit crops- classification of fruit crops – area, production, productivity and export potential.
Climate and soil requirements – varieties – propagation - planting density and systems of planting -cropping systems - after care - training and pruning - water, nutrient and weed management –fertigation - special horticultural techniques - plant growth regulation - important disorders – maturity indices and harvest- post harvest management.
Crops: Mango, Banana, Grapes, Citrus (sweet orange, mandarin, acid lime), Papaya, Indian goose berry (Aonla)

Unit III: Crop production techniques in subtropical and temperate fruit crops
Climate and soil requirements – varieties – propagation - planting density and systems of planting -cropping systems - after care - training and pruning - water, nutrient and weed management - special horticultural techniques - plant growth regulation - important disorders – maturity indices and harvest- post harvest management.
Crops: Sapota, pomegranate, Guava, Pineapple, Jack, Apple, Pear, Plum.
Unit IV: Status of production, principles of crop production and production technologies in plantation crops

Scope and Importance of plantation crops - area and production- export potential- classification of plantation crops- planting and cropping systems - principles of canopy management and growth regulation.

Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems- after care- training and pruning- water, nutrient and weed management- shade management-intercropping -mulching-cover cropping -harvest- post harvest management and processing

Crops: Tea, coffee, rubber

Unit V: Crop production technologies in plantation crops

Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems- after care- training and pruning- water, nutrient and weed management- shade management-intercropping – multi-tier cropping system-mulching-top working and other special horticultural practices- maturity indices and harvest- post harvest management and processing

Crops: cocoa, cashew, coconut, arecanut, oil palm and palmyrah

Practical

Features of an orchard – Tools, implements and machineries used for horticultural operations - preparation and application of PGR’s for propagation and crop regulation - micropropagation, protocol for mass multiplication and hardening. Propagation techniques, selection of planting material, varieties, important intercultural practices for the fruit crops: **mango, banana, grapes, papaya, sapota, guava, Indian goose berry.**

Plantation crops

Tea-Coffee -Rubber -Cocoa and Coconut – Areca nut- Visit to commercial fruit and plantations industries.
Theory schedule

2. Flowering, pollination, fruit set in fruit crops - Fruitfulness and causes of unfruitfulness.
5. Vegetative propagation - Grafting and budding.
7. Micro propagation in fruit crops.
8. Scope and importance of fruit crops cultivation - Area, production, productivity and export potential of fruit crops.
9. Climate and soil – varieties - propagation methods - planting and cropping systems - after care- training and pruning- top working - water, nutrient and weed management of Mango
10. Special horticultural techniques - plant growth regulation-GAP - important disorders – maturity indices and harvest - post harvest management of Mango
11. Climate and soil – varieties - propagation methods - planting and cropping systems - after care- water and nutrient management – fertigation technique – weed control of Banana
12. Special horticultural techniques - plant growth regulation - important disorders – maturity indices and harvest- post harvest management of Banana
13. Climate and soil – varieties - propagation methods - planting and cropping systems-after care – systems of training and pruning and bud forecasting - water, nutrient and weed management - special horticultural techniques - plant growth regulation - important disorders – maturity indices and harvest - post harvest management of Grapes
14. Climate and soil – varieties - propagation methods - planting and cropping systems - after care - training and pruning - water, nutrient and weed management - special horticultural techniques - plant growth regulation – nutrient deficiencies and important disorders – maturity indices and harvest- post harvest management of Citrus (Sweet orange)
15. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care - training and pruning - water, nutrient and weed management - special horticultural
techniques - plant growth regulation – nutrient deficiencies and important disorders –
techniques to rectify – maturity indices and harvest - post harvest management of
Mandarin and Acid Lime

16. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care - water, nutrient and weed management - special horticultural techniques - plant
growth regulation- important disorders – maturity indices and harvest - post harvest
management of Papaya

17. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care - training and pruning - water, nutrient and weed management - special horticultural
techniques - plant growth regulation - important disorders – maturity indices and harvest
- post harvest management of Sapota and pomegranate

18. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care- training and pruning - water, nutrient and weed management - special horticultural
techniques - plant growth regulation - important disorders – maturity indices and harvest
- post harvest management of Guava

19. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care - water, nutrient and weed management - special horticultural techniques - plant
growth regulation- important disorders – maturity indices and harvest –techniques of
round the year production of pineapple - post harvest management of Pineapple and
Jack. Value addition technologies for fruit crops.

20. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care- training and pruning - water, nutrient and weed management - special horticultural
techniques - plant growth regulation - important disorders – maturity indices and harvest-post harvest management of Apple.

21. Climate and soil – varieties - propagation methods - planting and cropping systems - after
care- training and pruning - water, nutrient and weed management - special horticultural
techniques - plant growth regulation - important disorders – maturity indices and harvest
- post harvest management of Pear and Plum
22. Scope and Importance of plantation crops - area and production- export potential-classification of plantation crops- planting and cropping systems - principles of canopy management and growth regulation.

23. Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems- after care- training and pruning of tea

24. Water, nutrient and weed management- shade management and harvest- processing of tea

25. Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems- after care- training and pruning of coffee.

27. Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems- after care- water, nutrient and weed management -intercropping – tapping system and processing of rubber

28. Climate and soil requirements- varieties- propagation- nursery management- planting density and systems of planting- cropping systems including multitier system - after care-training and pruning- water, nutrient and weed management- shade management- mulching- maturity indices, harvest and processing of cocoa

29. Climate and soil requirements- varieties- propagation- nursery management- planting-high density and systems of planting- cropping systems- after care- water, nutrient and weed management –intercropping- mulching -top working- maturity indices and harvest and processing of cashew

30. Climate and soil requirements- varieties- propagation- nursery management- planting systems- after care- water, nutrient and weed management- intercropping at various ages of plantation – multi-tier cropping system- harvest and post-harvest handling of coconut

31. Climate and soil requirements- varieties- propagation- nursery management- planting-after care- water, nutrient and weed management- intercropping- harvest and post-harvest handling of arecanut
32. Climate and soil requirements- varieties- propagation- nursery management- planting-
 after care- water, nutrient and weed management- tapping and harvesting of palmyrah.
33. Climate and soil requirements- propagation - planting- water, nutrient and weed
 management and harvest of oil palm.
34. Value addition in plantation crops.

Practical schedule
1. Features of an orchard – Tools, implements and machineries used for horticultural
 operations
2. Preparation and application of PGR’s for propagation.
3. Micro propagation, protocol for mass multiplication and hardening of fruit crops.
4. Propagation techniques, selection of planting material, varieties, important cultural
 practices for Mango
5. Propagation techniques, selection of planting material, varieties, important cultural
 practices for Banana
6. Propagation techniques, selection of planting material, varieties, important cultural
 practices for Grapes
7. Propagation techniques, selection of planting material, varieties, important cultural
 practices for Papaya
8. Propagation techniques, selection of planting material, varieties, important cultural
 practices for Sapota and Guava
9. Crop regulation in fruit crops – Training and Pruning practices, top working and
 rejuvenation of old trees.
10. Tea- identification of species, nursery practices, training and pruning – processing
11. Coffee - identification of species, nursery practices, training and pruning – processing
12. Rubber - identification of clones, bud wood nursery practices - processing
13. Cocoa - identification of types, clonal nursery practices, training and pruning –
 processing; Cashew- identification of varieties, propagation techniques, top working-
 processing
14. Coconut - identification of varieties, mother palm and seed nut selection, nursery practices- management of nutrient deficiencies - processing
15. Areca nut- identification of varieties, mother palm and seed nut selection, nursery practices- management of nutrient deficiencies - processing
16. Visit to commercial fruit and plantation industries.
17. Practical examination

Outcome

• Students will gain knowledge on the fundamentals of horticulture and propagation
• Students will be imparted with wide knowledge on major tropical, a few sub tropical and temperate fruit and plantation crops
• Hands on training on various propagation methods and important cultural practices for major fruit and plantation crops will be provided (Practical)

Reference text books

E-References

http://www.jhortscib.com
http://journal.ashspublications.org
http://www.actahort.org/
http://www.aphorticulture.com/crops.htm
http://cpcri.nic.in/
http://indiancoffee.org
Aim:
To make the students understand the importance of seed quality and principles involved in seed production.

Theory

Unit I - Introduction to seed and seed quality
Seed - definition - Seed structure - Seed development and maturation - Germination - phases of seed germination - Dormancy - types of seed dormancy - Seed senescence - causes of seed senescence - Seed quality characteristics - significance - Classes of seed - Generation system of seed multiplication in seed supply chain.

Unit II - Principles of seed production
Seed replacement rate and varietal replacement - Seed Multiplication Ratio - Seed renewal period - Causes of varietal deterioration and maintenance - Genetic and agronomic principles of seed production - Factors affecting quality seed production - Methods of seed production of varieties and hybrids.

Unit III - Seed production techniques of agricultural crops
Floral biology and pollination behavior - seed production techniques of rice, maize, sorghum and bajra varieties and hybrids - redgram varieties and hybrids - blackgam and greengram varieties - groundnut and sesame varieties - sunflower, castor and cotton varieties and hybrids – Bt cotton.

Unit IV - Seed production techniques of vegetable crops
Floral biology and pollination behavior - seed production techniques of tomato, chillies, brinjal, bhendi, onion, snakegourd, bittergourd, pumpkin, ashgourd, ribbedgourd and bottlegourd varieties and hybrids.
Unit V - Post harvest seed handling techniques

Threshing - methods - Drying - methods of seed drying - advantages and disadvantages
-Seed processing – definition - importance - Seed cleaning and grading - upgrading equipments - working principles - Seed treatment - importance - types - Seed invigouration techniques - seed hardening - seed fortification - seed priming - Seed enhancement techniques - seed coating - seed pelleting.

Practical

Study of seed structure of agricultural and horticultural crops - Seed dormancy - breaking methods - Seed invigouration techniques - hardening and priming - Seed enhancement techniques - seed coating and pelleting - Seed upgradation technique in rice- Acid delinting in cotton - Hybrid seed production techniques - Detasseling in maize - emasculation and dusting in cotton and vegetables - supplementary pollination in rice and sunflower – Practicing prgerminative techniques, enhancing floral ratio and improving seed set in cucurbits - Visit to seed production plot - Identification of physical and genetic contaminants, pollen shedders, partials, shedding tassels, selfed bolls and fruits - Physiological and harvestable maturity indices - Fruit grading - Seed extraction methods in vegetables - tomato, brinjal, chillies, bhendi and cucurbits - Seed cleaning and grading techniques - Detection of seed mechanical injury - Visit to seed processing plant - Seed production planning - Cost benefit ratio of hybrids and vegetables seed production.

Theory Schedule

1. Seed - definition - seed structure - Seed development and maturation
2. Germination - phases of seed germination - Dormancy - types of seed dormancy
3. Seed senescence - causes of seed senescence - seed quality characteristics - significance
4. Classes of seed - Generation system of seed multiplication in supply chain - Seed replacement rate and varietal replacement - Seed Multiplication Ratio - Seed renewal period
5. Causes of varietal deterioration and maintenance - Genetic and agronomic principles of seed production - Factors affecting quality seed production - Methods of seed production of varieties and hybrids
6. Floral biology and pollination behavior - seed production techniques of rice varieties and hybrids.
7. Floral biology and pollination behavior - seed production techniques in maize varieties and hybrids.
8. Floral biology and pollination behavior - seed production techniques of sorghum and bajra varieties and hybrids.
9. Mid semester examination.
10. Floral biology and pollination behavior - seed production techniques of red gram varieties and hybrids - blackgram and greengram varieties - groundnut and sesame varieties.
11. Floral biology and pollination behavior - seed production techniques of sunflower, castor varieties and hybrids.
12. Floral biology and pollination behavior - seed production techniques of cotton varieties and hybrids - Bt cotton - seed production techniques of varieties and hybrids of tomato, brinjal and chillies.
13. Floral biology and pollination behavior - seed production techniques of bhendi and onion varieties and hybrids.
14. Floral biology and pollination behavior - seed production techniques of snakegourd, bittergourd, pumpkin, ashgourd, ribbedgourd and bottlegourd varieties and hybrids.
16. Seed processing - definition - importance - sequence - seed cleaning and grading - equipments (cleaner cum grader) upgrading - equipments (colour sorter, Indented cylinder separator, specific gravity separator, spiral separator, magnetic separator - needle separator - working principles - Seed treatment - importance - types.
17. Seed invigouration techniques - seed hardening - seed fortification - seed priming - Seed enhancement techniques - seed coating - seed pelleting.

Practical schedule

1. Study of seed structure of agricultural and horticultural crops.
2. Seed dormancy breaking methods.
3. Practicing seed invigouration techniques - seed hardening.
4. Practicing seed invigouration techniques - seed priming.
5. Practicing seed enhancement techniques - seed coating and seed pelleting.
7. Detasseling techniques for hybrid seed production in maize.
8. Emasculation and dusting techniques for hybrid seed production in cotton and vegetables.
9. Hybrid seed production techniques - supplementary pollination in rice and sunflower.
10. Practicing pre-germinative techniques, enhancing floral ratio and improving seed set in cucurbits.
11. Visit to seed production plot - identification of physical and genetic contaminants, pollen shedders and partials, shedding tassels, selfed bolls and fruits.
12. Determination of physiological and harvestable maturity indices.
13. Fruit grading and seed extraction methods in vegetables - tomato, brinjal, chillies, bhendi and cucurbits.
14. Seed cleaning and grading techniques and detection of seed mechanical injury.
15. Visit to seed processing unit.
16. Seed production planning and determination of cost benefit ratio of hybrids and vegetables seed production.
17. Final practical examination.
Out come

The students will gain knowledge about the various techniques of quality seed production, processing and seed quality enhancement.

References

Standard text books

Online references

1. www.fao.org
2. www.seednet.gov.in
3. www.agricoop.nic.in
4. www.online library.willey.com
5. www.sciencedirect.com

e-journals

1. Seed Science Research (www.jgateplus.com)
2. Seed Science and Technology (www.jgateplus.com)

e- books

Scope
To gain knowledge and skills on measurement of land, surveying and leveling, different irrigation methods, pumping of water, soil and water engineering concepts

Objective
To impart the basics of soil and water conservation engineering to the undergraduate students

Theory
Unit I Surveying
Surveying and levelling – chain, compass and plane table survey – levelling – land measurement and computation of area – Simpson’s rule and Trapezoidal rule.

Unit II Soil erosion

Unit III Soil conservation and watershed management
Unit IV Irrigation and drainage

Unit V Wells and Pumps

Practical

Lecture schedule

1. Introduction - land surveying - uses in agriculture.
2. Chain cross staff and compass surveying - computation of angles.
3. Radiation, intersection and traversing.
4. Dumpy level - setting, observation and tabulation of readings - computation of land slope - difference in elevation.
5. Computation of area and volume – Simpson’s rule and Trapezoidal rule.
7. Water erosion - causes - erosivity and erodibility - mechanics of water erosion
8. Splash, sheet, rill and gully erosion - ravines - land slides
10. Effects of water and wind erosion
12. Mechanical measures – contour bund – graded bund - Broad beds and furrows – basin listing – random tie ridging
15. Farm ponds and percolation ponds - storage and its use for domestic and ground water recharge
16. Gully control structures -Check dams – Temporary and permanent
17. Watershed concept – Integrated approach and management
18. Mid semester examination.
19. Irrigation - measurement of flow in open channels - velocity area method
20. Rectangular weir - Cippoletti weir - V notch
21. Orifices - Parshall flume
22. Duty of water - irrigation efficiencies
23. Conveyance of irrigation water - canal lining
24. Underground pipe line system
25. Surface irrigation methods - borders, furrows and check basins
26. Components of drip and sprinkler irrigation system
27. Agricultural drainage – need - surface drainage systems
28. Surface drainage systems - drainage coefficient
29. Groundwater occurrence – aquifers types
30. Types of wells and sizes
31. Pump types – reciprocating pumps – centrifugal pumps
32. Turbine pumps – submersible pumps
33. Jet pumps – Airlift pumps
34. Selection of pumps – operation and their maintenance.

Practical schedule
2. Chains and cross staff surveying - linear measurement - plotting and finding areas.
5. Levelling – fly levels – determination of difference in elevation.
6. Computation of area
7. Computation of volume - Contouring
8. Design of contour bund and graded bund.
9. Visit to CSWRTI, Ooty.
10. Drip Irrigation systems.
11. Sprinkler irrigation system
12. Problems on water measurement.
13. Problems on duty of water, irrigation efficiencies.
15. Study of different types of wells and its selection.
16. Study of pumps and Selection of pumps.
17. Practical examination.
Text books

e- References

• http://nptel.ac.in/courses/105107122/13
• http://soilwater.okstate.edu/courses/lectures-powerpoint
Scope of the Course

Students will acquire knowledge in basis techniques that are applicable to agricultural sciences. Further the course will provide them good introduction to various statistical analysis used in biological sciences.

Objective

To understand and apply fundamental concept of statistical applications in biology and to acquire about theoretical concept of descriptive statistics, testing of hypothesis, correlation, regression and basic design of experiments.

Theory

Unit I: Descriptive Statistics

Introduction – Measures of central tendency: arithmetic mean, geometric mean, harmonic mean, median and mode –Merits and demerits. Measures of dispersion: Range, Quartile deviation, Mean deviation, standard deviation, and coefficient of variation - Skewness and kurtosis – Merits and demerits.

Unit II: Sampling Theory and Probability Distributions

Unit III: Testing of hypothesis

Null and alternative hypothesis – types of errors - critical region and tests of significance. Large sample test – single mean and difference between two means – single proportion and difference between two proportions.

Small sample tests – F-test - t-test for testing the significance of single mean – independent and paired t test – chi square test for testing the association of r x c contingency table.
Unit IV: Correlation and Regression

Correlation – Scatter diagram - Karl Pearson’s correlation coefficient – Spearman’s rank correlation - computation and properties.

Unit V: Analysis of Variance and Experimental Designs

Analysis of Variance (ANOVA) – assumptions – one way and two way classifications.

Basic principles of experimental designs – Completely Randomized Design (CRD) – Randomized Block Design (RBD) – Latin Square Design (LSD).

Text Books

References

Theory Schedule

1. Introduction – Measures of central tendency: arithmetic mean, geometric mean, harmonic mean, median and mode – Merits and demerits. TBI 1-5, TBI 25 - 35
2. Measures of dispersion: Range, Quartile deviation, Mean deviation, standard deviation, and coefficient of variation - Skewness and kurtosis. TBII 41 – 48
5. Binomial and Poisson distribution TBI 58 - 61
6. Continuous distribution: Normal distribution TBI 55 - 57
7. Null and alternative hypothesis – types of errors - critical region and tests of significance. TBII 16-17
8. Large sample test – single mean and difference between two means. Single proportion and difference between two proportions. TBII 20-24
9. **Mid Semester Examination**
10. Small sample tests – F-test - t-test for testing the significance of single mean TBII 26-28
11. independent and paired t test TBII 29-38
12. chi square test for testing the association of r x c contingency table. TBII 43-45
13. Correlation – Scatter diagram - Karl Pearson’s correlation coefficient – Spearman’s rank correlation - computation and properties. TBI 142 – 145
15. Analysis of Variance (ANOVA) – assumptions – one way and two way classifications. Basic principles of experimental designs. TBI 227 - 231
16. Completely Randomized Design (CRD) – Randomized Block Design (RBD). TBI 269 - 284
17. Latin Square Design (LSD). TBI 315 - 320

Practical schedule

1. Computation of arithmetic mean, geometric mean, harmonic mean, median and mode
2. Computation of range, standard deviation, variance, coefficient of variance
3. Selection of sample using simple random sampling method
4. Simple problems in Bernoulli distribution
5. Simple problems in Binomial distribution and Poisson distribution
6. Simple problems in Normal distribution
7. Large sample test – test for single proportion and difference between two proportions
8. Large sample test – test for single mean and difference between two means
 Small samples test – t-test for single mean – t test for difference between two sample means
9. (equal variances only)
10. Paired t-test
11. Chi square test
12. Computation of Karl Pearson’s correlation coefficient
 Fitting of simple linear regression equation y on x – correlation and regression using MS
13. Excel functions
14. Analysis of Completely Randomised Design (CRD) – for equal replications only
15. Analysis of Randomised Block Design (RBD)
16. Analysis of Latin Square Design (LSD) – analysis of CRD, RBD and LSD
17. **Final Practical Examination**

Web resources

2. www.statsoft.com
4. www.stats.gla.ac.uk/steps/glossary/index.html
9. www.statsci.org/jourlist.html

ERG 211 Renewable Energy 1+0

Unit I- Biochemical Energy Conversion

Unit II – Thermochemical Energy Conversion

Unit III – Solar Energy Conversion
Solar Energy – characteristics - types of radiation – solar constant-solar thermal devices –
solar water heater – solar cooker – evacuated tube collector – working principles and
applications-solar PV systems – principle – solar lantern - water pumping -solar driers –
natural and forced convection types – solar tunnel drier – working principles and
operation.

Unit IV- Wind and other Alternate Energy Sources

Wind mills – types – horizontal and vertical axis – components – working principles –
applications .Energy from ocean-waves-tides.Geothermal energy sources – principles and
operation-drying of agricultural products. Biofuels – importance – Biodiesel production
method – flowchart – by products utilization

1. Energy crisis – renewable energy sources – significance – potential and achievements in
India – energy requirements of agricultural and horticultural crops.

2. Biomass – methods of energy conversion – biochemical conversion methods –
thermochemical conversion methods.

3. Biogas technology – classification - types of biogas plants – KVIC and Deenabandhu
model biogas plants – factors affecting biogas plants.

4. Alternate feedstocks for biogas production – applications of biogas cooking, lighting and
engine operations - biodigested slurry and enrichment.

briquettes.

bioenergy gas stove – constructional features – principles and applications.

7. Pyrolysis – methods for charcoal production –biochar production– comparison between
slow and fast pyrolysis.

an application

9. Mid semester examination
11. Solar energy – characteristics of solar radiation - types of radiation – solar constant
 working principles and applications.
 principles and operation.
15. Wind mills – types – horizontal and vertical axis – components – working principles –
 applications.
 utilization

AGR 204 Short Tour 0+1

The students will undertake the short tour during third semester for seven days covering
KVK’s, Research stations, Sister campuses and ICAR institutes in the southern part of Tamil
Nadu. The study tour will provide an exposure to the students to know about the soil, climatic
conditions and cropping patterns in the respective agro-climatic zones. The students will also have first-hand information on latest technologies on various crops and allied activities.

AEN 202 Economic Entomology And Principles Of Insect Pest Management 2+1

Aim: To impart knowledge on the economically important insects and principles of insect pest management, including concept and components of IPM

Theory
Unit I: Economically important insects

Classification of insects based on economic importance - Apiculture - Bee species – comparison- castes of bees, bee behaviour and bee dance; Apiary management practices – bee pasturage, foraging, seasonal variations; Bee products – properties and uses; Effect of agricultural inputs on bee activity – pesticide poisoning; Lac insect- biology-strains-natural enemies of lac insect and lac products; Weed killers, pollinators, scavengers and soil builders -Household pests, human pests, cattle and poultry pests
Unit II: Insect Ecology

Unit III: Components of pest management

Unit IV: Integrated Pest Management

Practical

parameters. Pesticide application techniques. Preparation of spray fluids and botanicals for field application. Plant protection appliances.

Theory lecture schedule:

1. Economic classification of insects
2. Bee species – comparison – castes of bees – bee behaviour and bee dance
4. Bee products – their properties and uses
5. Effect of agricultural inputs on bee activity – pesticide poisoning
6. Lac insect- biology-strains-Natural enemies of lac insect and lac products
7. Weed killers, pollinators, scavengers and soil builders
8. Household, human, cattle and poultry pests
 Life table – Interspecific and intraspecific relationship
11. Abiotic factors – physical, nutritional and host plant associated factors on insect population. Bioresources in ecosystems
12. Pests – definition, categories and causes for outbreak of pests. Losses caused by pests
15. Cultural methods – definition – characteristics, requisites – farm level practices and community level practices, advantages and disadvantages- Ecological Engineering in pest management
17. Midsemester examination
18. Host plant resistance – types and mechanisms of resistance and role of host plant resistance in pest management
19. Biological control – definition, parasitoids and predators and their role in pest management
20. Microbial control – viruses, bacteria, fungi, protozoa and nematodes and their role in pest management, Biological control of weeds, Bio safety of introduced parasitoids, predators and entomopathogens
23. Classification of insecticides based on mode of entry, mode of action and chemical nature
24. Mode of action of organophosphates, carbamates, synthetic pyrethroids, neonicotinoids, diamides and avermectins

25. Insecticides Act 1968 – insecticide residues and waiting periods, role of pesticides in pest management, insecticide resistance management
27. Interspecific semiochemicals – pheromone, sex pheromone, alarm and trail marking pheromone. Pheromones in Integrated Pest Management
29. Insect growth regulators – moult inhibitors – Juvenile Hormone mimics – mode of action and uses. Insect antifeedants and repellents – mode of action, groups and uses
30. Botanicals and Biotechnological approaches in pest management – bio safety of transgenic plants
31. Pesticide application technology – principles and methods
33. Integrated Pest Management – history, principles and strategies – relationship between different components and economics

Practical schedule:
1. Identification, morphology and structural adaptations in honey bees
2. Bee keeping appliances, bee enemies and diseases
3. Lac insect-life history, hosts and culturing of lac, natural enemies and lac products
4. Study of household, human, cattle and poultry pests
5. Study of useful insects—Pollinators, weed killers, scavengers and soil builders
6. Symptoms and types of damage caused by insect pests
7. Assessment of insect population and their damage in rice, cotton and brinjal
8. Cultural, mechanical and physical control of insects
9. Identification and mass culturing of different types of parasitoids
10. Identification and mass culturing of different types of predators

11. Identification and mass production of entomopathogens
12. Behavioral approaches in pest management – Pheromone traps, light traps, sticky traps and others
13. Pesticide formulations and toxicity parameters
14. Pesticide application techniques
15. Preparation of spray fluids and botanicals for field application
16. Plant protection appliances
17. Final Practical examination

Assignment
- Collection and submission of 25 herbaria of symptom of insect damage

Outcome/Deliverables:
The students gain knowledge on productive and harmful insects as well as the principles of insect pest management, including concept and components of IPM

References:
A. Text Book:

B. Reference Books:
Supplementary references:

Web resources

Aim

The fundamental concepts of Genetics and Cytogenetics will be exposed to the students quoting classical examples

SYLLABUS FOR THEORY

Unit I: Cytology

Brief history of developments in genetics and cytogenetics; Physical basis of heredity: Structure and function of cell and cell organelles – Differences between Prokaryotes and Eukaryotes. Cell division – mitosis, meiosis and their significance, cell cycle - zygote formation and embryo development - identical and fraternal twins. Chromosome structure, chemical composition, nucleosome, centromere, telomere, euchromatin, heterochromatin, NOR, satellite chromosome, karyotype, ideogram – chromosome banding; Types of chromosomes based on position of
centromere, based on structure and function: based on the role in sex determination, normal and special chromosomes - polytene, lampbrush, Other types of chromosomes - B, ring and isochromosomes; Chromosomal aberration: Variation in chromosome structure – deletion, duplication, inversion and translocation – genetic and cytological implications; Chromosomal aberration: Variation in chromosome number – euploid, aneuploid, types of aneuploids and their origin; Nondisjunction - Klinefelter syndrome and Turner syndrome; Definition of eugenics and eugenics; Polyploid - auto and allopolyploids, their characters; evolution of wheat, Triticale, cotton, tobacco, Brassicas.

Unit II: Mendelian laws and modifications of Mendelian laws

Unit III: Quantitative inheritance, Linkage and Crossing over

Quantitative inheritance – Multiple factor hypothesis – Nilsson Ehle experiment on wheat kernel colour. Polygenes – transgressive segregation, comparison of quantitatively and qualitatively inherited characters; modifiers; Types of gene action controlling quantitative traits. Linkage - coupling and repulsion; Experiment on Bateson and Punnet – Chromosomal theory of linkage of
Morgan – Complete and incomplete linkage, Linkage group. Crossing over – significance of crossing over; cytological proof for crossing over - Stern’s experiment; Factors controlling crossing over. Strength of linkage and recombination; Two point and three point test cross. Double cross over, interference and coincidence; genetic map, physical map.

Unit IV: Sex determination, sex linkage and cytoplasmic inheritance

Unit V: Modern concept of genetics and mutation

DNA, the genetic material – Griffith’s experiment, experiment of Avery, McCleod and McCarthy – confirmation by Hershey and Chase; RNA as genetic material – Frankel, Conrat and Singer experiment. Structure of DNA – Watson and Crick model – Central dogma of life. Proof for semi conservative method of DNA replication; Models of DNA replication; RNA types - mRNA, tRNA, rRNA; Genetic code, protein synthesis; Regulation of gene expression – operon model of Jacob and Monad; Structural genes and regulator genes. Cistron, muton and recon; Complementation test; exons, introns – split genes – Transposable genetic elements- Ac - Ds system in maize. Functional genomics, Metagenomics, Transcriptomics, Proteomics, Metabolomics and Phenomics. Mutation – characteristics of mutation – micro and macro mutation – ClB technique - molecular basis of mutation- Transition and transversion; major physical and chemical mutagens.

SYLLABUS FOR PRACTICAL

Theory schedule

1. Definition of genetics, heredity, inheritance, cytology, cytogenetics; Brief history of developments in genetics and cytogenetics.

2. Physical basis of heredity: Structure and function of cell and cell organelles – Differences between Prokaryotes and Eukaryotes.

5. Types of chromosomes based on position of centromere, based on structure and function: normal and special chromosomes - polytene, lampbrush, based on the role in sex determination: autosomes and allosomes, Other types of chromosomes - B, ring and isochromosomes.

7. Chromosomal aberration: Variation in chromosome number – euploid, aneuploid, types of aneuploids and their origin; Nondisjunction - Klinefelter syndrome and Turner syndrome; Definition of eugenics and euthenics.

8. Polyploid - auto and allopolyploids, their characters; meaning of genome; evolution of wheat, Triticale, cotton, tobacco, *Brassica*

9. Pre-Mendelian ideas about heredity – Vapour and fluid theory, Magnetic power theory, Preformation theory, Lamarck’s theory, Darwin’s theory, Germplasm theory and Mutation theory.

10. Mendel’s experiments and laws of inheritance. Rediscovery of Mendel’s work

12. Chromosomal theory of inheritance. Allelic interactions – Dominance vs recessive, complete dominance, codominance, incomplete dominance, over dominance.

13. Deviation from Mendelian inheritance – Non allelic interaction without modification in Mendelian ratio – Bateson and Punnett’s experiment on fowl comb shape. Non allelic interaction with modification in Mendelian ratio – i.) Dominant epistasis (12:3:1)

iv.) Duplicate dominant epistasis (15:1)

15. v) Duplicate recessive epistasis (9:7) vi.) Dominant and recessive epistasis (13:3);

Summary of epistatic ratios (i) to (vi).

16. Lethal genes, Pleiotrophy, penetrance and expressivity, phenocopy: Multiple alleles, blood group in humans, coat colour in rabbits, self incompatibility in plants; pseudo alleles, isoalleles.

17. Mid Semester Examination

19. Polygenes – transgressive segregation, comparison of quantitatively and qualitatively inherited characters; modifiers; Types of gene action controlling quantitative traits.

20. Linkage - coupling and repulsion; Experiment on Bateson and Punnet – Chromosomal theory of linkage of Morgan – Complete and incomplete linkage, Linkage group.

21. Crossing over – significance of crossing over; cytological proof for crossing over - Stern’s experiment; Factors controlling crossing over.

22. Strength of linkage and recombination; Two point and three point test cross.

23. Double cross over, interference and coincidence; genetic map, physical map.

25. Genic balance theory of Bridges, quantitative theory, hormonal theory, barr bodies, metabolic differentiation theory; Gynandromorphs – sex reversal in chicken
26. Sex linked inheritance – criss cross inheritance – reciprocal difference; holandric genes; sex influenced and sex limited inheritance.

28. DNA, the genetic material – Griffith’s experiment, experiment of Avery, McCleod and McCarthy – confirmation by Hershey and Chase; RNA as genetic material – Frankel, Conrat and Singer experiment.

29. Structure of DNA – Watson and Crick model – Central dogma of life

30. Proof for semi conservative method of DNA replication; Models of DNA replication; steps involved in DNA replication.

31. RNA types - mRNA, tRNA, rRNA; genetic code, protein synthesis - transcription. Translation

32. Regulation of gene expression – operon model of Jacob and Monad; Structural genes and regulator genes. Cistron, muton and recon;

33. Complementation test; exons, introns – split genes – Transposable genetic elements - Ac - Ds system in maize - Functional genomics, Metagenomics, Transcriptomics, Proteomics, Metabolomics and Phenomics

34. Mutation – characteristics of mutation – micro and macro mutation – ClB technique - molecular basis of mutation- Transition and transversion; major physical and chemical mutagens.

Final theory examination

Practical Schedule

1. Use of microscopes

2. Principles of killing and fixing; preparation of stains and preservatives.

4. Study of the mitotic phases in root tips of onion / *Aloe sp.*

5. Procedure for fixing and observing different meiotic phases in the inflorescence of rice/maize.
6. Procedure for fixing and observing different meiotic phases in the inflorescence in pearl millet/ sorghum/ horticultural crop/ forest tree.

7. Repetition of meiotic studies in maize/ sorghum/ pearl millet/ forest tree and making temporary and permanent slides.

8. Observation of bivalents, trivalents, quadrivalents and chromosome banding.

9. Principles of dominance, recessive, back cross, test cross, incomplete dominance, codominance and lethal factor; Chi square test; Monohybrid genetic ratio with dominance, with incomplete dominance and test cross.

10. Dihybrid ratio with dominance, with incomplete dominance and test cross

11. Simple interaction of genes-comb character in fowls; Dominant epistasis.

12. Recessive epistasis, Duplicate and additive epistasis.

13. Duplicate dominant epistasis, Duplicate recessive epistasis, Dominant and recessive epistasis.

14. Multiple alleles and polygenic inheritance

15. Estimation of linkage with F₂ and test cross data; Coupling and repulsion.

16. Problems on two point test cross and three point test cross; Working out interference, coincidence and drawing genetic maps.

17. Final Practical examination.

Outcome

- Basic principles of inheritance and modern concepts of genetics will be exposed to students

References

Further reading

Web resources:

- www.nmsu.edu,
- www.biology200.gsu.edu

SAC 202 Soil Resource Inventory and Problem soils 1+1

Aim:

To impart proficiency to the students in exploring the problems and potentials of soil and water so as to decide the most appropriate land and water use.

Syllabus - Theory

Unit-I - Concepts of soil survey

Soil resource inventory - Early and modern concepts - Standard soil survey - Scope and objectives - Soil systematics - Soil mapping units - Methods and types of soil survey - Soil maps.

Unit-II - Soil taxonomy

Soil Classification - Earlier and genetic systems - Modern Soil Taxonomy - USDA System - Salient features, structure - Diagnostic horizons - Differentiating characteristics - Soil orders - Characteristics and distribution - Soils of India and Tamil Nadu.

Unit-III - Soil Survey Interpretations and Land Use Planning

Soil survey reports - Soil Survey Interpretations - Land Capability Classification - Soil and Land Irrigability Classification - Storie's Index Rating - Productivity potential - Fertility Capability Classification- Land suitability for field crops, horticultural crops and forest trees - Land Use Planning concepts and objectives.

Unit-IV- Soil constraints
Problem soils - physical and chemical constraints - Slow permeable, Excessively permeable, surface crusting, sub surface hard pan and fluffy paddy soils - Acid soils, Acid sulphate soils, ill drained and Aeolian soils and salt affected soils - Genesis, characteristics, effects on plant growth and management - Reclamation of problem soils .Polluted soils and their management.

Unit-V- Irrigation water quality and use

Quality of irrigation water - Criteria used for assessing the quality of irrigation water - Water quality appraisal - Effect of poor quality water on soil and crop growth.

Practical

Lecture Schedule

1. Early and modern concepts of soil resource inventory, Concepts of Standard Soil Survey, its scope and objectives
2. Soil systematics - Characteristics of genetic horizons, subordinate distinctions, pedon, polypedon and control section, Soil mapping units - Soil series, soil association, soil complex, variants, inclusions and miscellaneous land types.
3. Method and types of soil survey - Free and grid survey, Reconnaissance, Detailed, Semi detailed, Exploratory and Rapid reconnaissance survey
4. Soil classification - Purpose, early, genetic and modern systems of classification
 USDA Soil taxonomy - Structure and differentiating characters - Appreciation and Criticism.
5. USDA Soil taxonomy – Epipedons and Endopedons
7. Soil orders - Characteristics and distribution in world , Soils of India and Tamil Nadu
8. Soil maps, kinds of soil maps and their preparation
9. Midsemester Examination
10. Soil survey report preparation and interpretation
11. Land Evaluation - Land Capability Classification (LCC)- Fertility Capability Classification (FCC) Soil and Land Irrigability Classification, Storie's Index Rating and Productivity potential - Land Suitability Classification
12. Land Use Planning - Concepts and objectives - Tropical, subtropical and Temperate regions.
13. Soil physical constraints - slow permeable, excessively permeable soils, Soil crusting, sub soil hard pan, fluffy paddy soil, shallow soil - Characteristics and management
14. Acid soil and Acid sulphate soils - Genesis and characteristics.
Lime requirement of acid soil, liming materials and reclamation / management of acid soil
15. Genesis and classification of salt affected soils - Effect of salts on plant growth, Saline soil, sodic and saline sodic soil - characteristics and their management
16. Aeolian, ill drained and polluted soils- Characteristics and their management
17. Quality of irrigation waters - quality criteria and appraisal- USSL and other systems--Effect of poor quality water on soil health, crop growth and management.

Practical schedule

1. Profile description
2. Estimation of CEC in soil- Part-I
3. Estimation of CEC in soil- Part-II
4. Estimation of Exchangeable cations and working out ESP
5. Estimation of lime requirement of acid soil
6. Estimation of gypsum requirement of sodic soil
7. Nomenclature of soil as per Soil Taxonomy
8. Land suitability for field crops, horticultural crops and forest trees
9. Estimation of pH, EC, TSS and chloride in irrigation water
10. Estimation of carbonate and bicarbonate in irrigation water
11. Estimation of sulphate in irrigation water by turbidimetry
12. Estimation of calcium and magnesium in irrigation water
13. Estimation of sodium and potassium in irrigation water
14. Classification of irrigation waters as per USSL and other systems
15. Computation of salts in irrigation water
16. Field visit to problem soils area
17. Practical Examination

Text Books

References

e-references
5. www.oosa.unvienna.org/pdf/sap/centres/rscurrE.pdf
6. www.csre.iitb.ac.in/~dd/detail.html
8. inkinghub.elsevier.com/retrieve/pii/S0166248197800335
9. www.scribd.com/doc/40246764/Description-Pedon-Copy-
Outcome:

The students will gain a comprehensive knowledge and skills in assessing land suitability for various agricultural and non-agricultural uses. Further, the knowledge and skill gained in this course can be applied by the students in solving / managing the soil related problems and poor quality irrigation waters.
Scope of the course:

The course on ‘Introductory Nematology’ will give an introduction about nematodes, its diversity, extent of damage caused in crops and the necessity to manage them in agriculture.

Objectives:

The course aims at imparting basic, fundamental and applied aspects of the science of Nematology at UG level.

Theory-Unit wise syllabus

Unit I: History and Development of Nematology, Importance of Nematodes and Beneficial nematodes

Introduction – Brief history and development of Nematology at National and International level – Position of nematodes in animal kingdom – Economic loss due to nematodes to crop plants. Beneficial nematodes. (entomopathogenic nematodes – Steinernema and Heterorhabditis)- Parasites of insects (Mermis, Agamermis, Romanomermis).

Unit II: Morphology and Taxonomy of Nematodes

Morphology and Anatomy of nematodes (cuticle, cephalic region, alimentary, excretory, reproductive and nervous system, sense organs) – Taxonomy of plant parasitic nematodes – Classification, of nematodes based on feeding habits.
Unit III: Symptoms, Interaction and Bio-ecology of nematodes

Symptoms of nematode damage – interaction with other microorganisms (fungi, bacteria and viruses) – Biology and ecology of important plant parasitic nematodes (Meloidogyne, Heterordera, Rotylenchulus, Tylenchulus and Radopholus) - Life cycle of important plant parasitic nematodes (Meloidogyne, Heterordera, Rotylenchulus, Tylenchulus and Radopholus) - Interaction with other microorganisms.

Unit IV: Nematode Management

Principles of nematode management – Legislative (plant quarantine), physical methods (soil solarisation, hot water treatment, seed cleaning); cultural methods – (deep ploughing, fallowing, solarization, crop rotation, antinemic plants - Host plant resistance to nematodes; biological control – nematode trapping fungi, egg parasitic fungi, obligate parasites, PGPR and predators - chemical control – soil fumigants - Non fumigants-mode of action—formulations-methods of application–Integrated nematode management.

Unit V: Nematode pests of crops

Major nematode parasites and management in cereals (rice and wheat), millets (sorghum, and maize), pulses (redgram, blackgram, greengram and cowpea); oilseeds (castor, groundnut and gingly), fibre crops (cotton), vegetables (tomato, brinjal, bhendi, chilli and potato, cole crops (cabbage, carrot, cauliflower), fruits (banana, citrus, grapevine, guava and papaya), spices and plantation crops (turmeric, pepper, betelvine and coconut), flower crops (crossandra, jasmine, and tuberose), Carnation, rose, gerbera, chrysanthemum, eustoma medicinal and aromatic plants, (medicinal coleus, geranium and patchouli).Beet root, sugarbeet, tapioca, tuber crops (yam, dioscorea).

Unit VI: Other roles of nematodes

Nematodes as bioindicators, nematodes as biological model, nematodes as dyssaprobes.

Practical schedule
Usage and handling of microscopes (binocular, trinocular, zoom and compound microspores) - Sugar floatation technique, Fenwick can method, Incubation and Blender technique - Nematode processing techniques -preservation, slow and rapid method of processing, Making semi permanent and permanent slides - Morpholoy of orders Tylenchida (Hoplolaimus) and Dorylaimida (Xiphinema) - Identification of important nematodes (Tylenchorhynchus, Helicotylenchus, Pratylenchus, Hirschmanniella. Hemicriconemoides, Criconema, Heterodera, Globodera, Tylenchulus and Aphelenchoides) - Life stages of sedentary and migratory endoparasites.

REFERENCE BOOKS

e-book:
Agronomy Research is a peer-reviewed international Journal intended for publication of broad-spectrum original articles, reviews and short communications on actual problems of modern biosystems engineering incl. crop and animal science, genetics, economics, farm-and production engineering, environmental aspects, agro-ecology, renewable energy and bioenergy etc. in the temperate regions of the world. Acknowledgement to Referees: The Editors of Agronomy Research would like to thank the many scientists who gave so generously of their time and expertise to referee papers submitted to the Journal. Abstracted and indexed AEM203 COURSE GUIDE ii AGR203 PRINCIPLES OF CROP PRODUCTION Course Team Dr. Jari Sanusi (Developer/Writer) - NOUN Dr. S. I. Ogunrinde (Programme Leader) - NOUN Dr. Jari Sanusi (Coordinator) - NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA COURSE GUIDE. Introduction Principles of crop production: this is a two credit course for 200L students of BSC. (Agricultural Extension & Management). The course consists of 13 units under three modules which deal with the basic principles and practice of crop production. This course guide tells you briefly what the course is all about, and how you can work through these units. It suggests some general guidelines for the amount of time you are likely to spend studying each unit in order to complete it successfully.