Preface

Special issue on Discrete Tomography

Alberto Del Lungo a, Paolo Gronchi b, Gabor T. Herman c

aUniversità di Siena, Dipartimento di Matematica, Via del Capitano 15, 53100 Siena, Italy
bIstituto di Analisi Globale ed Applicazioni, Consiglio Nazionale delle Ricerche, via S.Marta 13A, 50139 Firenze, Italy
cDepartment of Computer Science, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

The subject matter of Discrete Tomography is the following. We assume that there is a domain, which may itself be discrete (such as a set of ordered pairs of integers) or continuous (such as Euclidean space). We further assume that there is an unknown function \(f \) whose range is known to be a given discrete set (usually of real numbers). The problems of Discrete Tomography, as we perceive the field, have to do with determining \(f \) (perhaps only partially, perhaps only approximately) from weighted sums over subsets of its domain in the discrete case and from weighted integrals over subspaces of its domain in the continuous case. In many applications, these sums or integrals may be known only approximately. From this point of view, the most essential aspect of discrete tomography is that knowing the discrete range of \(f \) may allow us to determine its value at points where without this knowledge it could not be determined. Discrete Tomography is full of mathematically fascinating questions and it has many interesting applications.

During the days of October 11–13, 2000 a workshop on “Discrete Tomography: Algorithms and Applications” took place at the Certosa di Pontignano, near Siena, Italy, organized by the three editors of this Special Issue. Attendees of the workshop were invited to submit papers to the special issue based on their presentations at the workshop. All submissions were refereed by at least two experts in the field and, based on their recommendations, they were revised (in most cases at least twice) prior to acceptance. The Special Issue, consisting of these accepted papers, does not claim to provide a comprehensive coverage of the field of Discrete Tomography. Such a coverage can be found in the book “Discrete Tomography: Foundations, Algorithms and Applications” (edited by Gabor T. Herman and Attila Kuba),

E-mail addresses: dellungo@unisi.it (A. Del Lungo), paolo@iaga.fi.cnr.it (P. Gronchi), gherman@gc.cuny.edu (G.T. Herman).

0024-3795/01/$ - see front matter © 2001 Published by Elsevier Science Inc.

PII: S 0 0 2 4 - 3 7 9 5 (0 1) 0 0 4 7 8 - 5
Birkhäuser Boston, Cambridge, MA, 1999. The papers in this Special Issue are samples of the research development that has taken place in the field of discrete tomography since the appearance of that book.
geometry, image processing, discrete tomography, computer graphics. The center of gravity of the international digital geometry community is mainly in Europe with a couple of research groups from India, Japan, and Australia and USA. In this special issue, selected articles cover many aspects of digital geometry: digital topology, digital shape modeling, digital curve and surface analysis, geometric and distance transform, and mathematical morphology. The guest editors would like to warmly acknowledge the reviewers for their invaluable contribution to this special issue. B. David Coeurjolly. Motivated by certain reconstruction problems in discrete tomography we study the existence of $(0, 1)$-matrices with given line sums and a fixed zero block. An algorithm is given to construct such a matrix which is based on three applications of the well-known Gale-Ryser algorithm for constructing $(0, 1)$-matrices with given line sums. A characterization in terms of a certain $\text{"structure matrix"}$ is proved. We also briefly discuss some generalizations where zeros may be fixed in other positions. The papers in this Special Issue are samples of the research development that has taken place in the field of discrete tomography since the appearance of that book. Jan 1999. Birkhäuser Boston. Ma Cambridge. Birkhäuser Boston, Cambridge, MA, 1999.